Interacting with the Human Eye: Gaze Vector Shape Based Recognition

and the Design of an Improved Episcleral Venomanometer

by

Trevor L. Craig

A Thesis

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Mechanical Engineering & Applied Mechanics

Under the Supervision of Professor Carl Nelson

Lincoln, Nebraska

August, 2017

Interacting with the Human Eye: Gaze Vector Shape Based Recognition

and the Design of an Improved Episcleral Venomanometer

Trevor Lynn Craig, M.S.

University of Nebraska, 2017

Advisor: Carl Nelson

The sense of sight is one of the main outlets to how we interact with the world.
Using eye tracking methods, this sensory input channel may also be used as an output
channel to provide commands for robots to follow. These gaze-commanded robots could
then be used to assist severely mobility-limited individuals in the home or similar
environments. This thesis explores the use of visually drawn shapes as the input for robot
commands. These commands were recorded using low-cost gaze tracking hardware
(Gazepoint GP3 Eye Tracker). The data were then processed using a custom algorithm in
MATLAB to detect commands to be passed to two different mobile robots. The ability to
use stochastic analysis for path prediction is also explored. Using the techniques and
procedures given in this paper, people with limited mobility will be able to input shape
commands to have robots react as personal assistants. This research is extensible to gaze-

based human-machine interfaces in general for a variety of applications.

In order to better under understand the eye, improvements and retro-fitting of an
episcleral venomanometer were conducted. A portable video enabled venomanometer

was created to observe vein occlusion and its correlating pressure. This was then

improved upon through design iteration. The current issue with measuring is receiving
accurate and precise readings of eye parameters due to variations in user technique.

Designing improved medical devices for collection of information on ocular health and
function will provide better understanding of related medical conditions, including but

not limited to, glaucomatous damage.

Contents

CHAPTER 1: INtrOQUCTION .ttt ettt ettt sa e et e e st e e s b e e sab e e saneeesmseesaneeesareenn 8
CHAPTER 2: APPROAGCH ...ttt ettt sttt et sttt ettt e st e st e e sate e sbe e e saseesabeesneeesareeenees 14
I BACKGROUND : ..ottt ettt ettt ettt ettt e st e s bt e e st e sbee e sabeesabeesnteesabeeesnseesnseesseeesaseesane 14

ii. STATE MACHINE CONCEPT ...ttt ettt sttt st e b s st s s b e 15
CHAPTER 3: IMETHODS ...ttt sttt ettt sb e sttt st e be e bt e s beesaeesabeeabeenbeesbeesaeenas 17
1. PROCEDURE: ...ttt ettt st sttt b e be e s bt st s e et e e sbe e s bt e sheesabesabeembeebeenes 17

ii. SHAPERECOGN (HIGH-LEVEL ALGORITHM): ..euiiiiiiieiieenieenite ettt ettt st s 18
iii. CENTER FINDING TECHNIQUES:ccotiiiiieeiiee ettt ettt st site e st e st e e sareesvaeesabeeenne 18
IV, FILTERING <.ttt ettt ettt st st st et b e be e s bt e s at e st e et e e nbeesbeesaeesubesabeembeebeennes 19

V. BEST FIT RADIUS ALGORITHMiiiiiiiiniiieie ettt sttt ettt st st sbe e s smee e s 21
Vi. CORNER FINDING ALGORITHM ...uitiiiiiiiiiiiieieeieestee sttt ettt st s sbe e s eaee s 22
Vii. HOUGH TRANSFORM METHODS......ccittiiiiteniee ettt sttt teeesiteesvee st e sbeesbaeesreesaees 23
3. PREPROCESSING ...c.uttiiiieiierie ettt sttt ettt ettt st sn e sre e s saneeaneenneesreesnne e 24

b. SHAPE DETECTION ALGORITHIM: ...ttt 24

Vi FINAL RESULT: .ttt ettt st ettt e sbe e s bt e sat e st et e e be e bt e sbeesmeeeneean 27
CHAPTER 4 RESULTS: ...ttt ettt sttt ettt sbe e sae e sttt et esbe e bt e s beesaeesabeenbeenbeesbeesaeenas 28
i. BEST FIT RADIUS ALGORITHIM:uiiiiiitieitteeite ettt ettt st sttt sbe e e st s e e b e nnes 29

ii. CORNER FINDING ALGORITHM : ..ottt sttt sttt 31
fii. HOUGH METHODS:oeiiiiiieiteete ettt sttt st et sene s e ne e neenns 32

a. AREA OF HOUGH TRANSFORM METRIC:.....cccutiiieiieniienierie et 32

b. MEAN OF HOUGH TRANSFORM METRIC:ciiiiiieeieeiieesite ettt ettt 33

. SLOPE OF HOUGH TRANSFORM METRIC: ...c.utiiiiiieenitenie ettt sttt et siee e 34

d. MEDIAN OF HOUGH TRANSFORM METRIC: ...c.eiiiiiiiienienieeie ettt et sie e 36

IV. RESULTS SUMMARY: ...ttt ettt sttt ettt ettt sttt e b s e sanesanesneenneenns 37

Vo HUMAN TESTING ..ottt ettt ettt st sttt et e s sae e st st e b e neesmeesmeesnnees 37
Vi. TESTING WITH NAO ROBOT: ...ttt ettt ettt sttt ettt st st eb e esmeesmee e s 41
vii. TESTING WITH LOCATION DEPENDENT COMMANDS:coiiiiiiinienie et 41
CHAPTER FIVE: STOCHASTIC ANALYSIS ...ttt ettt sttt ettt ettt st et et esaeasaee e 44

ii. FREQUENCY, DAMPING RATIO, POWER (VARIANCE) CONTRIBUTION:ccceooeererrereerennenne 54

T, DISCUSSION ...ttt ettt ettt e e e e s ettt e e e e s e s aanbtbeeeeeeeeasnsbbaeeeeesssannsseaaeeens 55
CHAPTER SIX: EPISCLERAL VENOMANOMETERuneeeeeeee e 58
I INTRODUCTION: ...ttt sttt ettt sttt st ettt e bt e s bt s st st e et e e beesbeesaeesmnesmsesaneenneennes 58

ii. PROBLEM DESCRIPTION: ..c..utiitiiiieiteettestte sttt ettt ettt st sttt e bt e s st s s e nneenne 60
T, SOLUTION : ...ttt ettt e e ettt e e e e e s e bab et e e e e s e s bt baeeeeeeeasannbebaeeeesesannssaaaeeens 62

Q. ITERATION L e s s s e s e s s e s s s e s e s e s e s e e e s e s e s e s e sasssaansnsnsnsasnsnnns 62

o T I I 1 27N 1\ PPN 66

C. ITERATION 3 ettt b ettt ettt e b e s bt e sae e st e et e et e e bt e sbeesateeaeeenteenbeenbeesaeenns 71
G ITERATION 4.ttt ettt ettt et e bt e s bt e sat e st e et e et e e bt e sbeesabeeateenteeabeenbeesaeenas 73

€. ITERATION Sttt ettt ettt e e e e e et ee e e e e s e smnbe et e e e e e e sanneneeeeeeeeesannrnnes 77
CHAPTER SEVEN: CONCLUSIONS ... s s e e e e e e e e e e e e e e e s e s e e e e e e e e e e e e e s 81
i. CONCLUSION OF GAZE VECTOR SHAPE BASED RECOGNITION......ccvttttiiiiiiiiiieeeeeesniieeeeee 81

ii. CONCLUSION OF DESIGN OF AN IMPROVED EPISCLERAL VENOMANOMETER:...........ceeeeee. 82
ACKNOWLEDGEMENT ...ttt ettt ettt e e e ettt e e e e s e st et e e e e e e eansbeeteeeeeasannnereeeeeeeeasannrenes 84
WVOIKS G, ..ttt ettt b e bt sae e e at e e be e bt e sbe e sae e st e eabeebeeabeesneesaeeeneean 85
APPENDIX L ettt ettt ettt e e e e e e et e e e e e s e e b e et e e e e e e e e nbbeeteeeeeeeannereeaeeeeeaaanrrnee 92
) do Yot Tl o Iy 4ol =X [0 = 4] o - PRSPPIt 92
01T ol = SO P PR PR PR PRPTPPRRPO 96
QUM X s s s s s s s s s s s s s s s s s e s e s s s n e s s e e n e e e e e e aaeaaaaaaaeaeaaaaaaaaaaaaaaaaaaaaasaaaaaeeens 99
Yo LU= = TR 103

I =10 =4 LI SR 106

I g1 =4 LT SR 111
U LAY s s s s s s s s s s s s e s s s s s s s s s s s s e s s s s s s s s snssssassnsssssssssssssssnsssssnsnansnsnansnnnnennennns 114
HOUGH TRANSFORIMIS: ...ttt sttt ettt et sttt et b e sbeesme e saeeeeeenneesrnesane e 115

O o] [T PRTOTRRPI 115
U . e 119

B I gL =4 L= USRRROE 122
SUMMANIZEA RESUIES: ...ttt et s s ne s 124

YT o1=] o Yo [SRR 126

=] = 1[0 o T TR 126

Le=T 0 Lo o 1 PRSP OP SRR 129
Le=T 0= Lo 1S O PSPPSR 131
JEEIATION 4 oo 133
JEEIATION 5: e e 135
AP PEN DX B e e e e e e e e e e e e e e e e e e aaaeeens 139
ShaPERECOGNGUITESTM: ..iiiiiiiiie ettt et e st e e st e e e e raba e e e eataeeessnsaeeesansreeeens 140
Y] KT oY =£ 1o Y PP PP PO PTPOPPPPPN 147
Y11 T o TSP PP PPTPROPPOPPONt 152
(O 12=1 2o 1] a1 o1 TSP 171
g Lo Ld o T=T 00T oY =T ' o O OO SO P PR P RO PPORPPPRPUPPRPPOOt 174
DY = a1 = 1 4 O T O T O TP PP UPOTOUPPRRPPPPTOTI 175
Y g FE Yo L= 2 U=Tolo={ oY Vol o o PR 176
Y 4 F= T or= 0 [T 5 PSP 184
(0o g o (=T DT=1 (=T o Ao] o N 4 H PO PPPPRTOTPPN 185
Y g F= Yo L= B L] =Tt TP 187
o oTUTd o XY [o o ST UR 194
DISPLAYXY M ottt ettt st et et e s e st sttt r e b e s beesme e s aeeete e reesreennee e 195
[geT=4 T 0 0] = U] g Tor=] o o ¢ P PPPPPPPPPPPPPPPTPTRE 196
SAVETOFIES .M ettt st st 197
2T aTe (o] oY\ =T o 4 T= o o H TR TR PPRRTI 198

[T 010 [o] 8 0 =T KO 1o [T o o o FH U 199

List of F

Figure 1:
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9:

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16:
Figure 17:
Figure 18.
Figure 19.
Figure 20.
Figure 21:
Figure 22:
Figure 23.
Figure 24:
Figure 25:
Figure 26:
Figure 27.
Figure 28:
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.

igures:

Nintendo Hands Free CoONtroller........ i iieii et 9
Shape guide with hypothetical command overlayccccoceeeviiieeiiciiee e, 15
General data flow for shape detectioncccccveieeciiiiiccciee e 18
SMOOTNING EXAMPIE ..veiiiiiiieiciiee et e e e et e e s sare e e s s aaee e s eabeeesennreeas 20
Y- Tolor= Yo [l o [o o [USSR 21
SMOOh Shape EXAMPIE ...oeeeieiiee ettt et e e et e e e e e e e e rabe e e e e abae e e enraeas 21
Drawn a shape with bounds for best-fit radius algorithm........c.ccceeviiiiiiiiiiiiiees 22
Corner Locations fOr the CIrClEeivviviiieeeee et 23
ol Fe 1YY I - o 11ROt 25

Unique Graphs for Respective Shapes from Fig. 8......ccvevvvciiieiiiiiiieiiiee e 27
Example of Slope and Peak Location for SQUAreccccecveeeeciiieeeccieee e 35
LTl [N =T o - ol SRR 38
The NAO robot is responding to gaze-based commandscccccceeveecivveeeeeeeeciccinneeennn. 41
[200] oo A= 1 fl ao 1 1o 1 NS 42
RODOT With 3 LEDS ..eeeiiiiiiiiiiiieesciiiee ettt ee sttt e sttt e st e e e s ata e e e e sabae e e ssasaeeeessaeeesnnseeeean 43
ARMA (2,1) Model Circle X CoOrdinate........ccccveeeeeireeeeeiirieeeeereee et eereeeeeereee e 48
ARMA (2,1) Model Circle X Coordinate Future Predictions.........ccccoceeeeecieeeeccreeeeennen. 49
Episcleral Venomanometer........ccoceeeeiveeeecieeeeecieee e Error! Bookmark not defined.
Espiceral VeNous Pressure PICTUIESciicciieiiiciiie ettt e e saee e ssanee e 59
Basic Anatomy of the HUMaN EYe........c..ooiiiiii it 61
R 1 o] o1 o VA o 174 T o RPN 63
Adafruit PITFT 2.8" TOUCNSCIEENcoviiiiiiiiiieeiie ettt ettt ettt s 64
10=T =) {0 o I PP PP PPP SRR 65
Lipped and Groove Back PIatecoccuiiiieciiieicciiie ettt 66
[ot a o] Y [olyl - - 1Y RPNt 67
L =T) (o] o 1 AP PUT PO PPPPPPPPPTN 68
POtENTIOMETEN AIM i e e e e e e e 69
[Yort M o T U] o 11V -SSR 70
Carson MicroBrite POcket MiICrOSOCPEuuuiiieiieiicciiiiiiee e e e ettt e e e e e e e eenenes 71
10=T =) {0 o T T TSP P PP PPPTP 72
JamStand aNd GOOSENECKciiviiiiiiiiiiiee ittt e e st e e s ree e e s sbeeeessanes 74
10=] =) {0 o R ST T PP PP PPP T OPPPRPPN 75
10=T =) {0 o o SO P PP P PP PPPPR 79

CHAPTER 1: Introduction

Assistive robots have been given significant research attention in recent decades,
especially in the home care domain for facilitating and enhancing the daily living, of the
disabled and elderly. Extensive effort has been put forward to enhance robot capability in
performing various tasks like cooking [1], [2], doing laundry [3], [4], object retrieval [5],
[6], performing bed baths [7], assisting walking [8], [9], etc. However, with continuously
increased functionality and complexity of the robotic system [10], [11], [12], managing
these robots becomes inevitably more complex [13], which is burdensome or even
infeasible with traditional control interfaces consisting of buttons, switches, knobs, touch
screens, motion control, and joysticks. Moreover, new challenges arise in designing for
human-robot interactions (HRI) due to the fact that a large portion of the target user
population is disabled or elderly. The question of how the human user can effectively and
efficiently interact with these robotic systems has drawn much attention in robotics

research.

Even common devices such as keyboards are being optimized for enhanced
durability, faster response times, different feels of the click, and ergonomics. The
keyboard market for mechanical keyboards alone is $602.1 million with growth to $642.2
million by the end of 2016 [14]. The market for computer input devices and expansion is
huge. A subset of this larger market is people who do not have the ability to use the
newest keyboard or touchscreen; these individuals are the group whose physical or
neurological problems do not allow this common input method. The video game

company Nintendo had devised a partial solution to this problem by creating the NES

9
Hands Free controller, Figure 1. Directional input is achieved by adjusting the controller
with your chin and button presses are replaced by sucking in or blowing out air. These
devices allowed minor fitting adjustments with straps and required partial movement of

the player; although not ideal it allowed basic communication to the NES console.

B

N _c

wes Hands Free

FUIAL OO

Figure 1: Nintendo Hands Free Controller

To facilitate human-robot interaction, researchers have been investigating various
new communication signals to extend the communication channels. These new
communication signals are mainly adapted from natural interpersonal communication
signals and biosignals, including speech [15], [16], facial expressions [17], [18], body
gestures [19], [20], electromyography (muscle) signals (EMG) [21], [22], and
electroencephalogram brain signals (EEG) [23], [24]. The goal of this investigation is to
find the applicable communication signal that can be handled by the user with little effort

to learn and utilize. Substantial research has been conducted on these signals mentioned

10
above to validate their feasibility and investigate their functionality. However, there is
another promising natural signal, eye gaze, which has not been given enough attention in
HRI. According to a new market research report [25] the eye tracking business is quickly
expanding as well, estimated to reach $1,028.1 million by 2020. Although the market is

large, the applications are not yet fully realized.

Gaze represents where a person is looking, which is estimated from eye
movements. In light of monitoring technologies, gaze tracking can be categorized into
three types: contact lens [26], video-based optical methods [27], [28], [29], [30], and
electrooculogram (EOG) [31]. Nowadays, the most widely used technology is video-
based eye tracking, a noninvasive optical method; in contrast, the other two need direct
contact with the eyeballs or the skin around the eyes. Gaze tracking technology has been
investigated for a long time and was widely used as a tool for human behavior studies to
support research in neurobiology [32], [33], psychology [34], [35], computer science
[36], [37], and human factors [38], [39]. However, there is limited work reported which

used gaze as an interaction modality.

Gaze as an interaction modality between a human and a robot is natural and
effortless, which makes it particularly promising for the disabled and elderly. Gaze is a
natural communication modality among humans; for example, one person often uses
his/her gaze to guide another person to an object of interest for joint attention. Managing

gaze to look at particular locations is almost effortless, which does not require learning.

11

Even though the gaze modality is promising HRI, it is quite difficult to effectively
utilize it to generate various control commands. Without appropriate interpretation, gaze
has only been used as a pointing device to select a target from a candidate pool. One
popular gaze interpretation method is to use the gaze direction to trigger a step driving
command along one particular direction. In [31], [40], [41], wheelchairs were steered by
gaze to move forward, backward, left or right, and the same method has also been used to
steer a mobile robot in [42]. Similarly, gaze was used to drive a quadcopter [43] or rotate
a robotic laparoscope system [44], [45] upward, downward, left or right. In these studies,
a user had to continuously generate step driving commands using gaze until the robot
incrementally reached the destination. However, gradually steering the robots step by

step using gaze could be tedious for the users.

In previous work, users directly specify the destination that a robot needed to
approach using gaze, which avoided triggering the incremental steering commands. In
[46], [47], [48], gaze was used to define the concentration area of a robotic laparoscope
system, and in [49], gaze was used to define the destination of a mobile robot.
Controlling a robot by defining the goal using gaze is much easier as the users only need
to generate the control command once, rather than repetitively triggering the incremental

steering commands. Thus, the mental and physical burden can be reduced.

In these gaze-based robotic interaction examples, gaze has only been used to
navigate robots to approach a desired location or orientation by controlling their motion,
such as driving forward, backward, left and right. However, methods for generating rich

and varied control commands, to interact with a robot, still constitutes an open problem.

12
One attempt to generate various commands using eye gaze signals is to

create/code a blink-based language with which the user indicates commands by blinking
the eyes in patterns based on duration, number, and/or frequency. This has been
previously used to control wheelchairs [50] but requires up to 4 blinks for simple
commands. This is impractical for complex commands, as it involves memorizing
multiple blink-based patterns, requires the ability to stop blinking after long commands,
and includes the assumption that the user does not blink to re-center their eyes or
otherwise introduce “false positive” blink events. A problem with using timing for the
duration of blinks is that humans are not extremely accurate at controlling this, and the
blink duration will vary from person to person as well as be influenced by factors such as

fatigue [51].

Another downfall of blink-based algorithms is the presence of involuntary blink
events. Involuntary blinking, along with quick eye movements (called saccades),
increases with the complexity of a given situation [52]. For example, in heavy traffic a
person may blink 22.1 times per minute with 20.2 saccades per minute; this is compared
to low complexity values of 19.6 and 11.7 respectively [52]. Depending on the situation,
these involuntary eye movements and blinks could be difficult to distinguish from
intentional commands. Regardless of these shortcomings, tracking blink events
accurately has been accomplished [53] but should be used with moderation as the human
variation in blink duration [51] and the inaccuracies introduced by involuntary blinking
[52] could provide unsatisfactory results. With the addition of saccade effects [52], there

seem to be too many issues to rely on blinking alone.

13

As a result of the numerous deficiencies, a new approach is suggested in this
thesis. This new approach suggests that drawing shapes with the eye gaze will allow for
more complex command inputs, greater remembrance of commands, and fewer mistakes
interpreting the input compared to the blink-based approach. This approach can use
blink-based commands to instruct the program when to start and stop recording shape-
based commands. Through this combination of blink and gaze data channels, fewer errors
are anticipated and a more natural HRI may be achieved. This thesis aims to explain the
process of how these techniques work and how they are designed with the severely
disabled user in mind to facilitate activities of daily living. A primary motivation is to
enable robotic assistance for individuals with limited mobility and motor control, with the
assumption that these individuals retain full control of eye movements (consistent with
certain types of injury to, and degenerative diseases of, the nervous system). The gaze-

based command language will create a diverse command set for the robot to carry out.

14

CHAPTER 2: APPROACH
I. BACKGROUND:

This work was carried out under the assumption that users have the ability to
move their eyes; this is especially important in consideration of the target population of
physically- and mobility-challenged users. We also assume the use of eye tracking
software using a conventional computer monitor or screen (the Gazepoint GP3 Eye
Tracker system is used in this work). The Gazepoint system collects data at 60 Hz, is
accurate to within one degree of visual angle, and is compatible with a maximum screen
size of 24 inches [54]. The software transforms the x and y pixel coordinates on the
screen into coordinate gaze vectors which are used to construct the shapes for command
detection, as described below. Coordinate vector tracking has been successfully

accomplished in this way in previous research projects [55] for other applications.

Since a screen or monitor must be used with the Gazepoint system, it can also be
used to feed information back to the user about the possible commands available (or
provide context specific prompts). Overlaid guidance for drawing shapes can be provided
as seen in Figure 2. This aspect is important as it reduces a user’s workload of
memorizing the commands and thus improves the user experience for people with
impairment who may be confused by the technology. This will also improve the
command detection accuracy as the user can trace the shape with their eyes. Using a
screen allows for many different modes of feedback to the user, and indication of intent

from the robot.

15

O Rotate

Figure 2. Shape guide with hypothetical command overlay

The scope of commands in this work is based on commercially available robots
suitable for HRI. We adopt the small humanoid platform called NAO (Aldebaran
Robotics) [56] as one of two experimental platforms, with the other being a custom-built
wheeled robot. Algorithm results (gaze-based commands) are transmitted to the

respective robot for execution by its integrated control software.

ii. STATE MACHINE CONCEPT:

A general concept that can be utilized to help simplify commands in the gaze-
based language is the idea of state dependent commands. State-dependent programming
allows for a limited set of options to be available to the user in a particular situation. A
common example of a state machine is the context-specific menus that appear when
performing a right mouse click in most software. This programming structure makes
sense for assistant robots as not every command will be applicable or needed for every
situation. The system can predict the user’s likely set of intentions based on knowledge of
the robot’s surroundings, location, etc. and only enable relevant commands. This context-

sensitive menu can then be displayed to the user on the screen when the user instructs the

16
program to start recording shape-based commands. This type of contextual interaction is

achievable with the NAO robot using its documented object recognition capabilities [57].

The state-machine framework can be further illustrated by an example pertinent to
our goal of assistive HRI. If NAO knew it was in the kitchen and recognized an empty
glass on the table, this could trigger menu options such as fill the glass’ or ‘put the glass
in the cupboard’. These options would be displayed to the user’s screen, and after

command input, a final blink approval could be administered for command execution.

Rather than elaborate on the development of state-based menu options for HRI in
this paper, we focus on the task of recognizing shapes from user gaze (and distinguishing
between different shapes). These shapes are the building blocks of a state-based HRI
framework, as a few shape primitives can be used to “drill down” into the state- or
context-specific menus displayed to the user. We specifically consider circles, triangles,

and squares as candidate shapes.

17

CHAPTER 3: METHODS

This section presents the concepts of how the shape detection algorithm works
and the reasoning behind its different elements; more explanation for specific results is

discussed later in the thesis.
i. PROCEDURE:

The main program takes in gaze vectors in x and y coordinates and then runs
through multiple testing procedures to determine which shape is traced (if a shape exists
in the data). The overall flow process can be followed in Figure 3. For the convenience of
the user and to account for variations among user characteristics and preferences, all
settings used for determining the shape can be personalized for best performance.
Experiments were run with these same processes as described in more detail below, to
determine if using eye gaze to draw a shape was comparable to drawing shapes with a
mouse. A final score was calculated, known as the Shape Points Score Estimation
(SPSE), based on combined results of six different metrics which will be described in
more detail (best-fit radius, corner detection, the area of Hough transform, the mean of

Hough transform, the slope of Hough transform, the median of Hough transform).

SPSE = ¥, wi(1 — Mi.actual—Mi,idea1) 1)

Mjideal

For n=6 shape-matching metrics (normalized M;), each is multiplied by a weight
w; which is found through calibration (see Table 1 below). Higher metrics indicate a

stronger correlation to matching the respective ideal shape.

18

Area
Best-fit
Radius Hough Mean
Transform
Gaze Data M
SPSE
corner Median Weighted Shape

Detection Average Score

Figure 3. General data flow for shape detection

ii. SHAPERECOGN (HIGH-LEVEL ALGORITHM):

The main core of the program (the high-level algorithm) is a script called
ShapeRecogn. This program takes in the settings.ini file and calls other functions,
combining their results to output the command that can be interpreted by the robot. The
user inputs the centroid of their position of interest by allowing the gaze to dwell on it
and blinking once (detected from the eye gaze data, analogous to a mouse click) and the
software then tracks the subsequent x and y gaze data, passing it to the various shape
detection subroutines described below. The user blinks again to end the collection of
shape data. The same effect is achieved with a mouse using a right click to start drawing
and a right click to end drawing. Both sets of data (gaze-input and mouse-input) included
shapes across a spectrum of “neatness” to reflect the inexact nature of the input data that

would typically be input to the algorithm.

iii. CENTER FINDING TECHNIQUES:

The center of the object that is drawn is important for many aspects of the control
algorithm. When shapes are drawn with the eyes, the center location may need further

refinement, due to the high variance of the gaze point. Two options are available to the

19
user for center finding. One is optimized for speed and suffers in robustness whereas the
other is optimized for shapes that are shifted off of their center location. The first option
takes the mean value for both the eye gaze coordinate vectors in x and y and then
calculates this as the center. The drawback of this method is that it is heavily affected by
the noise of the unfiltered vectors. The other option is taking the vectors and creating a
closed shape that is then converted to a binary image, for which properties information
can be generated using the MATLAB function regionprops(). From there the centroid can
be found from the statistics. This method is more computationally intensive but creates

more accurate responses and is the chosen method by default.

iv. FILTERING:

The original gaze vectors are very noisy and need to be filtered for better shape
recognition. Multiple steps are done to ensure accurate filtering. Some unintentional side
effects of the filtering will be rounder corners, a slight decrease in shape size, and less
gaze coordinate vector data overall to process. The first step is taking the standard
deviation of both the x and y portions of the gaze vectors. This is then used as a criterion
to reject outliers that are more than 1.5 times past the standard deviation from the center.
This works as all usable data will be within the same general area, and the data beyond
this threshold represent saccades or the start or end of drawing a shape. This also helps

account for blinking as the eyes can jump far from the intended target during a blink.

The next step is a moving average filter that helps smooth the lines for easier
shape detection, as shown in Figure 4. The filter size is dependent on a percentage of the

total gaze data points from the start of the shape to the end of the shape. The default is set

20
to 10%. The results of the filtering can be seen in Figure 4, Figure 5, and Figure 6. Notice

that Figure 6 did not need much filtering and as a result little filtering was done.

The importance of filtering data from gaze, as compared to other inputs such as a
mouse, is due to the existence of saccades. Large saccades can cause the center of a shape
to shift in the direction of the saccade leading to inaccurate detections, as in Figure 5. To
combat this issue, an extra step to re-compute the center can be done after filtering is

completed. This increases processing time but can also increase detection accuracy.

Figure 4. Smoothing Example

21

Figure 5. Saccade Example

,"

Figure 6. Smooth Shape Example

v. BEST FIT RADIUS ALGORITHM

ShapeRecogn reads the x and y coordinates of gaze data for the shape and the
position of interest. The maximum and minimum distance from the position of interest
(centroid) are found, and these values are used to construct bounding shapes as illustrated
in Figure 7. A subroutine then counts the points that fall between the two shapes or
bounds and calculates a score. The score is a percentage of points that fell within the

bounds. The best length scale (e.g. radius, side length, hereafter referred to as radius for

22
all shapes) to fit the data is found for the three shapes, along with a percentage output
representing the amount of data that fits within those bounds. These bounds can be
adjusted in the settings.ini file depending on the degree of the disability and personal
preference of the user. However, it should be noted that adjusting the bounds for each
shape differently may affect the detection success negatively, as with large bounds
squares may be detected as circles. The results are returned to the main function
ShapeRecogn. This function executes quickly for small radius values, but as the radius
increases the computational time also increases. The same issue occurs for poorly drawn
shapes as the minimum radius may be quite small and the maximum radius quite large

due to the roughness of the drawn shape.

\
1 . 1
I !

I-ﬂ‘

Figure 7. Drawn a shape with bounds for best-fit radius algorithm

vi. CORNER FINDING ALGORITHM

The next metric uses Harris corner detection [58]. This metric uses the data for
each radius from the best-fit radius algorithm and checks the corners at “expected”
locations (based on the shape templates used in the menu structure). A buffer can be
adjusted to allow for the sharpness of the corner to detect and the zone to search for each
shape. In the case of circles, the entire profile is checked to check to see if any corners are
detected on the shape; this is best seen in Figure 8. In Figure 8, asterisks are placed where

the corner would be for each radius value; in the circle case, a circle profile is used

23

instead of asterisks. The number of corners detected then becomes a metric for SPSE that

is returned to ShapeRecogn.

Figure 8. Corner Locations for the Circle

vii. HOUGH TRANSFORM METHODS

The next subroutine uses the Hough transform for shape detection. The Hough
transform is designed to detect lines in a binary image. The function uses the parametric

representation of a line [59]:
p = xcos(8) + ysin(6) (2)

The function returns p, the distance from the origin to the line along a vector
perpendicular to the line, and 6, the angle in degrees between the x-axis and this vector.
These data are used to create the histograms in Figure 10, with p related to Hough matrix

intensity. This process is used in several shape detection methods which follow.

H

_ {1,ij =i
jk —

0, Hyy, # i

d; = Z?;olfrows of H ZofcolumnsofHij'Where i = 1: max(max(H) (3)

24
This produces a graph where the x-axis roughly represents an increase of radius
by 1 and the y-axis is the sum of the number of points in the Hough transform matrix that
correspond to that radius. A data set might consist of 283 data points from the original
493 points in x and 493 points in y that created a Hough matrix of size 2371x360. The
size of these parameters will change for every shape drawn but share similar shape

characteristics.

a. PREPROCESSING:

A preprocessing step was implemented to speed up the runtime of the program.
This preprocessing step was to create large tables of data for perfect shapes at various
radii; this decreases program runtime by using reference values from tables (a “lookup”
approach) rather than calculating the Hough transform for each possible shape and
comparing data against the drawn shape. All of these calculations otherwise would create
more processing time that the possibly disabled user has to wait as their gaze vectors are
being calculated. This preprocessing step is a unique aspect of this project, as the image
only consists of the shape drawn, whereas in most other applications of the Hough

transform further processing and filtering are done to achieve accurate Hough data.

b. SHAPE DETECTION ALGORITHM:

The Shape Detection Algorithm subroutine starts with the best radius for each
shape and the drawn image. The drawn image consists of coordinate vectors that are

connected to create an enclosed shape; this can be seen in Figure 9. This shape is then

25
filled to be able to apply the Hough transform efficiently. Due to preprocessing, the
perfect Hough transform data is retrieved from tables, and only one Hough transform is
required (for the traced image), speeding up the process. The values from the table are

compared with the input data to determine the different metrics for each shape.

Figure 9: Enclosed Shapes

The drawn shape after the Hough transform is compared to the data from
idealized shapes in preprocessing. The data can be represented in graph form as seen in
Figure 10. The parameters for comparison are the area under the curve, the median, the
average value at low Hough intensity, and the slope of the data. The slope of the data was
calculated using representative points near the lowest intensity and the peak of the
intensity histogram. The peak point location is calculated by the highest intensity of the p
value (eg. 2). Figure 10 shows the Hough graphs for Circle, Square, and Triangle from

the shapes in Figure 9 respectively, along with corresponding idealized shapes.

Idealized Circle Shape vs Actual Input

6000 T T T
/ . User Input
| | Idealized Shape
5000 f || 8
I
II [
4000 [| -
IIl |
1] [
= [
3 3000 ﬁ"l' | b
o .
/ |
2000 /,/ || b
e |
e |
1000 __,\/_-./-' \ 4
0 I | . | Nt s . .
0 10 20 30 40 50 (1] 70 80 a0 100
Hough Matrix Intensity
Idealized Square Shape vs Actual Input
6000 T T T T ; T T T T T
||.I".I - User Input
11 ldealized Shape
5000 II II 8
[
| |
4000 1| .
\
|
2 [
5 L | | |
3 3000 | \
O II \
I| X
2000 - |"| _II B
] 1
b4 |
R . o : r
1000 34 et e s Al DA 1~ .
1] L 1 1 I | ;..“"--4_._._ n L]
0 10 20 30 40 50 80 70 80 90 100

Hough Matrix Intensity

26

27

Idealized Triangle Shape vs Actual Input
T T T T T

2000 T T

| ; User Input i
1800 . Lt Idealized Shape

woofF T A~ e N .

00|
12001 o R 7

1000 4

Counts

800 A .

800 | -

P 1

0 I I I s S
0 10 20 30 40 50 60 70 80

Hough Matrix Intensity

Figure 10. Unique Graphs for Respective Shapes from Fig. 8

viii. FINAL RESULT:

The result of the shape detection algorithm is determined by combining the
different metrics from all of the subroutines (eq. 1). These functions create a score for
each shape. The highest score is the shape that the program chooses as the correct shape.
If the score is below a minimum threshold, no shape is chosen. All shapes receive a score
due to normalization. The results of each test can be saved. This is helpful for testing and
further analysis of the data to create a better fit for each user and each disability (patient-
specific tuning of the algorithm). With the results of this program, commands can be sent

to the robot to perform various assistive tasks.

28

CHAPTER 4: RESULTS:

A total of 120 traced shapes were analyzed (20 for each of the three test shapes,
repeated using both gaze and mouse input). The weights for one user were calibrated
from a small data set and are presented in Table 1. Table 2 and Table 3 show the average
SPSE score of 20 results for each shape, using gaze and mouse input respectively. The
rows represent the average value for each intended shape that was drawn, whereas the
columns represent the shape-detection results. It is interesting to note the differences
between the experiments done with the eyes compared to the experiments done using
mouse input. The gaze-based SPSE values are all lower than the SPSE for the mouse-
drawn results. This is further explained by looking at each metric individually to check
the validity of the solution. It is important to note that the bold numbers represent the
intended shape and intended result. These are always highest for final results, indicating

that the valid results are returned.

Table 1. WEIGHTS USED FROM CALUBRATION

Metric | Radius | Corner | Area | Mean | Slope | Median

Weights | 10 3 4 4.5 3 3

Table 2. SHAPE DETECTION FINAL RESULTS USING EYE GAZE

Shape Detected

Circle Square Triangle
§ Circle 18.6067 | 14.89301 | 9.61/871
g Square 11.92702 | 18.54621 | 9.597459
§_ Triangle | 12.43349 | 9.56102 | 18.42686

Table 3. SHAPE DETECTION FINAL RESULTS USING MOUSE INPUT

Shape Detected

Circle Square Triangle
c Circle 21.79355 | 13.6458 | 5.932328
& [Square | 14.08615 | 21.06246 | 5.226813
é_ Triangle | 6.929033 | 10.48045 | 20.13124

i. BEST FIT RADIUS ALGORITHM:

29

The first metric was from the percentage of data points that fell within the
bounding shapes in the best--fit radius algorithm and then multiplying by the weights. By
setting all weights, other than that for radius, to zero in (eg. 1), the individual contribution

to SPSE can be seen in Table 4 and Table 5.

Table 4. POINT MATCH USING BOUNDING SHAPES WITH GAZE

Shape Detected

Circle Square Triangle
§ Circle 7.04515 | 5.275 5.04847
§ Square | 5.15393 | 5.19377 | 3.58795
§_ Triangle | 4.67693 | 3.45145 | 5.82683

Table 5. POINT MATCH USING BOUNDING SHAPES WITH MOUSE

Shape Detected

Circle Square Triangle
% Circle 7.87036 | 5.88343 | 2.19373
& [Square | 0573813 | 7.10807 | 1.72813
é' Triangle | 0.35031 | 2.99144 | 6.71473

30

The results for the mouse input compared to the gaze-based input are interesting

as they do not have the same patterns. One large weakness of the best-fit radius algorithm
is the false detection of circles when squares are intended. This can be seen in Table 4.
The reason for this is due to the increased roughness of the shape when using gaze
compared to the smooth strokes of using a mouse. This roughness causes the values to be
outside of the bounding shapes, which is what is used to check to see if the data is
compliant to the model. Although the accuracy is lower, this metric still accomplishes the

goal of finding the best-fit radius value.

31

ii. CORNER FINDING ALGORITHM:

The next metric is the results from the corner-finding algorithm. The idea is to
match the number of corners detected with the corresponding shape (circle = 0, triangle =
3, square = 4). The weighted corner finder results (based on zero weights in (eq. 1) for
other metrics) can be seen in Table 6 and Table 7. One thing to notice is that there is a
large increase in the number of corners discovered in the gaze data compared to the
mouse data. This is due to the extra bumps and curves in the image drawn by the eye
being detected as corners. The maximum number of corners that the corner-finding
algorithm looks for can be set to different values; in these experiments, it was set to 8 and
only checked near expected corner locations. In the instance of a circle, the program

checked the whole shape for corners. This is a reason why the circle results are so high.

Table 6. CORNER DETECTION BY SHAPE WITH GAZE

Shape Detected

Circle Square Triangle
S Circle 1.95 0.7 0.75
5 [Square |17 1.9 0.75
é;' Triangle | 1.65 0.6 1.9

Table 7. CORNER DETECTION BY SHAPE WITH MOUSE

Shape Detected

Circle Square Triangle
< | Circle 1.0 0.1 0
=
§ Square A 1.7 0.3
8 —
& | Triangle |0 0.5 1.1
(9]

32

iii. HOUGH METHODS:

The next set of metrics are based on the Hough transform and the approximations
of the Hough transforms that were previously derived. By using the Hough transform
each shape had unique properties that were separated into different calculable results

contributing to the overall SPSE score.
a. AREA OF HOUGH TRANSFORM METRIC:

The first Hough-based metric is the difference in the area compared to the area
found for a perfect shape with equal radius. In other words, it is the basic integral under
the curve in Fig. 8. This area is subtracted from the perfect shape area. All weights except
that for the area are set to zero in (eq. 1), and the results are seen in Table 8 and Table 9.
Something worth noting is that the area for a circle shape and a square shape are nearly
identical, but this is not the case for the triangle (although poorly drawn circles can be
mistaken for triangles). This can be seen in the triangle drawn shape in Table 8 as the
circle was incorrectly chosen by the program. Otherwise, the numbers are as expected for

both the mouse and the gaze-based trials.

Table 8. AREA OF HOUGH TRANSFORM- GAZE CASE

Shape Detected

Circle Square Triangle
§ Circle 2.547442 | 1.903898 | 1.419948
5 [Square | 1.536639 | 2.485485 | 1.695392
§_ Triangle | 3.183223 | 0.440902 | 2.513845

Table 9. AREA OF HOUGH TRANSFORM- MOUSE CASE

Shape Detected

Circle Square Triangle
c Circle 2.958929 | 0.947028 | 2.456028
S [Square | 1.999308 | 2.422011 | 1.421321
é' Triangle | 0.84204 | 2.646811 | 2.777951

b. MEAN OF HOUGH TRANSFORM METRIC:

33

The second metric for Hough-based shape detection is finding the mean of the
first one-third of the Hough histogram. In the first third of the data, the mean tells quite a
lot about what shape has been drawn (see Figure 10). However, one weakness is that the
average value of square and circle are again very close to each other, but triangles are

quite distinguishable, as seen in Table 10 and Table 11. In both the mouse and the gaze-

based cases, the triangle stands out easily.

Table 10. MEAN OF FIRST ONE-THIRD OF HOUGH TRANSFORM-GAZE CASE

Shape Detected

Circle Square Triangle
§ Circle 2.626377 | 3.770403 | 0.647659
g Square 1.571241 | 3.828741 | 1.244637
§_ Triangle | 0.835423 | 2.005884 | 3.846952

Table 11. MEAN OF FIRST ONE-THIRD OF HOUGH TRANSFORM-MOUSE CASE

Shape Detected

Circle Square Triangle
% Circle 4.185824 | 3.09798 | 0.237311
& [Square |2.279997 | 4.253781 | 0.619156
é' Triangle | 0.684837 | 2.134503 | 4.240643

c. SLOPE OF HOUGH TRANSFORM METRIC:

34

The third metric is the slope evaluated from the beginning of the Hough transform
data to the peak in the data, as shown in Figure 11. The peak location varies by shape but
represents a characteristic radius similar to an inscribed circle. The peak value was
calculated using an averaging window with 5 data points immediately preceding the
highest matrix intensity value (eq. 3). These values are used to determine the difference
between square results and circle results. Square and triangle have similar slopes and

should appear to have similar numbers if the variance of the data is not too high. Slopes

35

were compared using (eq. 1) with all weights other than for slope equal to zero, yielding

Table 12 and Table 13. The circle’s variance continued to be a problem as it affected the

results for both circle and square readings. Otherwise, the data are still fairly comparable

and show correct results for square and triangle.

SQUARE

SLOPE

Figure 11. Example of Slope and Peak Location for Square

Table 12. SLOPE OF HOUGH TRANSFORM -GAZE CASE

Shape Detected

Circle Square Triangle
g Circle 1.437732 | 2.24371 | 0.7518
g Square | 0.965202 | 2.138216 | 1.319481
_(;.;' Triangle | 0.387915 | 1.862779 | 2.239229

Liner legusl
Eaalita? Shaps

Table 13. SLOPE OF HOUGH TRANFORM- MOUSE CASE

Shape Detected

Circle Square Triangle
§ Circle 2.778436 | 2.617368 | 0.045264
g Square | 2.368715 | 2.578591 | 0.158205
§_ Triangle | 0.699052 | 1.2077 2.497919

d. MEDIAN OF HOUGH TRANSFORM METRIC:

36

The fourth metric is slightly different from the other metrics. This metric is based

on the median Hough data value. The median always follows an average trend where the

triangle has the smallest median, the circle has the middle median, and finally, the square

has the largest median. The corresponding data are shown in Table 14 and Table 15.
Although the median value is slightly different when comparing gaze to mouse-based

input, the trend is the same.

Table 14. MEDIAN OF HOUGH TRANSFORM-GAZE CASE

Circle Results 478

Square Results 816.9

Triangle Results | 261.5

Table 15. MEDIAN OF HOUGH TRANSFORM-MOUSE CASE

Circle Results 251.1

Square Results 836.9

Triangle Results | 58.3

37

iv. RESULTS SUMMARY:

All of these weighted metrics from the Hough transform data (slope, median,
area, mean) are added to the data returned by the other subroutines (percentage of points,
corners) to determine the detected shape. The final results can be seen comparing gaze to
mouse data in Table 2 and Table 3. The average values for all of the test trials showed
that the SPSE values showed the correct shape on average. In fact, all cases gave the
correct shape according to the SPSE. To ensure no false positives, the program can be set
to not find a result for anything less than a threshold value of SPSE; for example, in

Table 2 the value could be set to 15 based on the second highest SPSE score.

v. HUMAN TESTING:

To improve the robustness of the algorithms, human testing was needed. The next
improvement was the inclusion of a GUI for the user to interface with, shown in Figure
12. The entire algorithm was implemented in the ShapeRecogn() function, only requiring
x and y coordinate vectors and a center position to calculate the shape and SPSE scores to
output to the user. This advancement allows for the broader application of the shape

recognition software.

38

SHAPE COMMAND RECOGNITION

Start Test

e “
/
Open Gazepoint Control \ y,

Calibration RIGHT

EXIT
Enter User ID
Save Results LEFT

/\

STRAIGHT

Shape Drawn | _ Waiting....

Figure 12. User Interface

The interface seen in Figure 12, is part of an ongoing study intended to obtain
pilot data, determine potential problems, gauge the robustness of the program, and have
the ability to tune the system to future users by establishing common features. These
common features would include the speed the user draws each shape, the amount of
wavering around lines, amount of saccades, and many other features. Data was collected

under an IRB-approved protocol with informed consent of the participants.

Participants were asked to sit in a chair and look at a computer screen. They were
then asked to "draw™ a few test shapes (circle, square, triangle) using their eyes, so they
became familiar with the task and software. Once familiar with the system, each
participant was asked to draw a total of 30 shapes (10 each of the three types of shape, in
random order). The gaze coordinate vectors were recorded and saved in text files. The

participants were then asked to complete a survey consisting of questions asking if they

39
encountered any discomfort, how easy it was to draw shapes, if their eyes became dry,
how well they felt the system identified their intended shapes, and any pros and cons of

usability.

The preliminary SPSE results, as seen in Table 16 for the first six users, along
with the subjective user feedback, will help make future improvements to tune the shape
recognition system. The preliminary results show that on average the correct shape is
being drawn even by inexperienced users. It is worth noting that the SPSE scores are
lower than those in Table 2 and Table 3. This is due to some inexperience, the system not
being individually tuned to their preferred settings, and other potential issues discussed

later.

Table 16. SHAPE DETECTION FINAL RESULTS USING EYE GAZE.

Shape Detected

Circle Square Triangle
g Circle 15.5720 | 11.3761 | 7.6389
5 [Square |11.8602 | 14.0893 |8.79702
é;_ Triangle | 8.86922 | 10.8502 | 14.1145

base information provides insight on potential correlations (see Table 17).

Although further testing is needed to fully understand the results, the current user

Table 17. USER BASE STATISTICS

Question Units Result
Discomfort? % Yes 80
Easy to draw Scale

shapes? (1-5) 3.533333
Eyes become dry? | % Yes 100
Correct Scale

Identification? (1-5) 3.8

The most common problem is an issue with eyes becoming dry. This occurred

40

around shape 20 of 30 for most users. The user was allowed to take a small break if they

wanted but only one user ever did. All notes on discomfort were from dryness in the eyes.

Currently, no users with vision or mobility disabilities have tested the system. The most

common suggestion was that when the shapes intersected on the GUI, their eyes would

wander on the wrong shape for a while before correcting. Another helpful suggestion

from multiple users was to change the background GUI to be a different color other than

white, for example black, to decrease the brightness on the eyes, which in turn would

decrease eye dryness. The last common complaint or suggestion was users’ perception

that the program smoothed the corners of the shapes. This is a side effect of the filtering

and the time spent looking at each corner. This should not be an issue in processing, but it

may have caused some user dissatisfaction.

41

vi. TESTING WITH NAO ROBOT:

The ShapeRecogn() program was used to control a NAO robot; (Figure 13). The
robot was given a list of shape-based commands representative of a command sub-menu;
this can be seen in Figure 13. Three healthy subjects were asked to draw 30 shapes, 10
for circle, square, and triangle respectively. Each shape then triggered the NAO’s action.
The percentage of correct shapes that were detected for the three test subjects were 90%,
97%, and 100%, for circle, square, and triangle respectively. This was without changing
values in the settings.ini file to help further improve the percentages (tuning the algorithm
for the specific users). These results demonstrate that the NAO is responsive to the

program output and performs the intended function.

e éﬁ‘ A
€ Jd 9‘ .

|
»

"

Dance Stand Up Wave

Figure 13. The NAO robot is responding to gaze-based commands

vii. TESTING WITH LOCATION DEPENDENT COMMANDS:

To demonstrate the idea of controlling robot navigation, seen in Figure 14, using
shape-based commands, a grid was created within which a robot can navigate. The grid,

as seen in Figure 14, had four sections labeled A, B, C, and H for home. The user was

42
given three options for travel to locations (A Circle, B Square, C Triangle), using the
interface from Figure 12. The robot then moved to the designated location. Once at this
location, it gave the user three options for turning on LEDs (Blue Circle, Red Square,
Yellow Triangle). The robot has now completed its task and returns to the center location,
ready for a new command. Performance was judged by the robot navigating to the correct
zone 10 times using only commands given with eye gaze patterns. One mistake occurred
where the wrong shape was detected, the right shape was then drawn and the robot

moved to the correct location.

Figure 14. Robot at Position A

43

Figure 15. Robot with 3 LEDs

Although the demonstration is quite simple and lacks complexities such as
obstacle avoidance, the relevant applications can be quite varied. For example, location A
could represent a kitchen and each LED a command, perhaps to retrieve pills, water, or
turn off the stove. The robot then returns after completion of the task and the user can
issue a new command. The state dependency refers to a physical location in this example

but could be states of time, temperature, or velocity.

44

CHAPTER FIVE: STOCHASTIC ANALYSIS

The shape solving algrorithm is fast and efficient but can still be improved. One
area of improvement would be to reduce the overall processing time. The size of the
Hough matrix lends itself to being the most time intestive part due to processing. The
current method is to process all of the Hough transform matrices to get the intensity data
that can then be compared to the new data intensity. The comparison looks at the slope,
mean value, median value, and area under the curve to produce a score. All of these
calculations create more processing time that the possibly disabled user has to wait as
their gaze vectors are being calculated; this is due to the different requirements in
processing based on the resulting drawn image size. The objective of this data modeling
will be to create a dynamic model against which new gaze vector data can be compared
to see if it fits the shape model. Potential challenges include different locations of shape
start and end points, outliers where the eye traveled to a new point quickly, and different
size of the shapes being drawn. An ARMA (Auto Regressive Mean Average) model can
be made to represent different parameters of the eye and the eye gaze data. These models
will be constructed for all the Hough transform models and the original x and y shape
data. This will not only provide greater insight on how the eye is tracing shapes but be

able to predict what shape is being drawn without excessive processing.

ARMA models can be found by using methods of Data Dependent Systems
(DDS). A DDS methodology begins with knowledge and data collected from a system, in
this case gaze coordinate vectors. From the observed data the development of statistically

adequate models can be started without full knowledge of all system parameters. From

45
this data alone forecasting gaze coordinates is possible [60]. The method of DDS can
provide a differential equation that governs the system [61] and can provide information
on the things such as the frequency of saccades or other factors that affect eyes
movement. The DDS approach uses least-squares techniques to fit a series of difference
equations until a statistically adequate model is achieved; this is the basis of the ARMA

model. The modeling is of the form [61]:
Xt — P1Xp1 — PoXpogeo o —PpXepy = A — 01041 . Oy 1041 (4)
I EY
=12 (5)
x¢ = X — X (6)

where x; are the data responses at a certain time, and a; is the associated white noise. ¢;
is the auto regressive coefficient of lag i, and 6; is the moving average coefficient of lag j
[62]. N is the number of samples. In other words N is the number of gaze coordinates,
and ¢; and 6; represent the linearity of the gaze coordinate values over time. This
information will be beneficial in path prediction as it can predict where the eyes will be
several points ahead, allowing for faster processing potential. The model can also provide
a non-biased dual verification method as to what shape was drawn and where the shape

was started.

The first data set will be strictly the x coordinates gathered by the GP3 that
correlate to the circle shape. This vector will be substitued into the equations for a DDS

and evaluated at different ARMA models until a minimum Residual Sum of Squares

46
(RSS) is found. The different ARMA models will start small, such as ARMA(1,1) which
represents only one autoregressive part (¢p) and one mean average part (0), and increase
until the F-test is satisfied. It should be noted that a higher order model may be required
dependent on shape of the data. For more explanation of the equations or of the process

see Appendix 1.

Using the rules of the F test, Table 18 was created.

Table 18. F-Test of Differnt ARMA Models

Order | RSS #UAC>3 | FO<>Fcrit

0,0 4295584 105

1,0 5832.615 24 | 361854.5054>3.8604
2,1 4622.992 4 | 42.6495>2.6231

4,3 4554.955 31 1.8111<2.3903

6,5 4480.427 31 1.9132<1.9576

The model of interest is the ARMA(2,1) model. This was chosen due to the
ARMA (4,3) model showing not much improvement in the reduction of errors proven
with the F test (1.8111<2.3903). The model being an ARMA(2,1) means we will have
two ¢ and one 0. These values are found by iterating until RSS is as small as statistically
possible. Note that the unified autocorrelation (UAC) is not 0, meaning that there is

correlation among the residuals.

After finding the parameters of the equation the values are ¢p; = 1.4518, ¢, =
—.4528 and 6; = 3.2289 * 10~°. Looking at a ARMA(2,1) model that appears in this

form:
Xe = $1Xe—1 + Paxe—z + ar — 010, 1 ARMA(2,1)
Substituting the values from the equations for gaze vectors in X:
x; = 1.4518x,_, — .4528x,_, + a, — 3.2289 * 10 %a,_,

We can use this model to estimate many parameters that will be helpful in
forecasting and analysis. Figure 16 and Figure 17 were also made to help better explain

the different parameters.

47

ARMA(2,1) Model with Mean Estimation: XDotT
200 [rp = B784.4261; ;= 312.8277; Xbar = 312.8276; N =493]

X ol _

_2 DD 1 1 1 1 1 1 1 1 1
a0 o0 150 200 250 300 350 400 450

obs

50 100 150 200 250 300 350 400 450

Figure 16: ARMA (2,1) Model Circle X Coordinate

48

49

- . -

ARMA(2,1) Model with Mean Estimation: XDotT

2
g 14
0
0 10 20 30 40 50 60 70 80 90 100
]
H_H:LJDD T T T T T T T T T
> [A N
o T T - T
4 200} T —
+
o
><1DD 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
lead
1010 - -
w”é 100 [
10_1.;} L L L L L L L L L
0 005 01 015 02 025 03 035 04 045 05

Frequency (1/Unit(A))

Figure 17: ARMA (2,1) Model Circle X Coordinate Future Predictions
Because we are looking at ARMA(2,1) models for this model we can use the

explicit equation for the Green’s functions. The equations are given below (Egs. 7-9), but
can be received through most DDS software, as seen in Figure 17.

G; = g1) + g, for real 2, and A, (7)

_A1—64 __ A0,
gl - 11_12’ 2 — /12_2'1 (8)

A2y = = (bs +/—BF +4¢2) (9)

50

Knowing the values of A allow for the user to see if the system is stable, unstable, or

asymptotically stable following these conditions.

Table 19. Stability Conditions

|1,]<1 And 1,] <1 Asymptotically Stable
1A, |>1 And/Or 12,1 > 1 UNSTABLE

AEN And 12,] < 1 STABLE

2,=1 And A, =—1 STABLE

In this first case 4; = .9983, 4, = .4535 this condition means that the system will be
asymptotically stable. 6, is equal to 3.2289 = 10~> which is very close to zero allowing

some simplifications.

_.9983-3.2289+107°

__ .4535-3.2289x107°
91 = T go83-4535

= 1.8324, g, = 359933 —.8324

G; = 1.8324(.9983)/ — .8324(.4535)/

It can be seen in Figure 17 that the Green’s function is very slowly approaching 0.
This is mostly due to the fact that the equation is subtracting from itself at almost the
same rate that it is adding. When j=10000 we achieve a point at 7.5 * 10~8, and when
j=1000 we achieve a point at .33. This means that the system has a very strong memory.
In other words the effects from previous data strongly affect the future system values as
well; this is not necessarily bad as it depends on how you are expecting your values to

change. Since the x coordinate could change at any time to a new position quickly it

51
helps smooth the data, but if the data keeps moving unexpectedly it may be a bad fit for
the current model. This would be due to the values not responding fast enough to the

current model. This can be seen when forecasting.

I. FORECASTING:

With the ARMA(2,1) model can now forecast values for the system. Forecasted
values could be utilized in the system to predict the next few points of where a user was
drawing with their eyes. These predicted points could be compared with the real points
and the longer processing tasks could be started early if the beginning of a vector was
following the forecasts for a certain shape. The basics of forecasting an ARMA(2,1)

model as follows.

Xe(1) = E[x¢44]

Xe(1) = E[p1x¢ + Paxe—1 + apyq — 0104]

Xe(1) = p1x + Poxeq — 6010,

Xe(2) = E¢[p1xes1 + Poxe + Apyp — 01a441]

£:(2) = 1%, (D) + Pox,

£:(3) = Ee[P1Xe42 + PoXpyq + Apyz — 01a445]

ft(3) = ¢15€\t(2) + q—"zft(l)

Any values past | > 3 steps ahead that will be

() = 1% (1= 1) + px,(1—2)forl =3

52

So taking the model
x; = 1.4518x,_, — .4528x,_, + a, — 3.2289 * 10~ %a,_,
and looking one step ahead
%,(1) = 1.4518x, — .4528x,_; — 3.2289 * 10~ %q,

One can look at a data point near the start of the data series to simulate a computer
guessing the next point. We are going to be le looking at x5, = —78.8276, x49 =

—78.8276, as, = —.0730 and evaluating success after looking 4 steps ahead.

Xs50(1) = P1x50 + P2X49 — B1a5

£50(1) = 1.4518(—78.827) — .4528(—78.827) — 3.228 = 1075(—.073) = —78.7488

£50(2) = P1Rso(1) + Pyxsy = 1.4518(—78.7488) — .4528(—78.8276) = —78.6344

£50(3) = P1%50(2) + PyReo(1) = 1.4518(—78.634) — .4528(—78.748) = —78.5040

£50(4) = ¢1%50(3) + PyReo(2) = 1.4518(—78.504) — .4528(—78.634) = —78.3665

53

Table 20: Summary of Predicted Points

Forecast Real Percent Difference (%)

X50(1) |-78.7488 | x5, |-79.8276 | 1.360588714

%s0(2) |-78.6344 | x., |-79.8276 | 1.505958919

X50(3) | -78.504 xs3 | -80.8276 | 2.916667388

Xs0(4) |-78.3665 | x5, |-80.8276 | 3.091931699

The forecasted and real values are surprisingly very close, only being off by
1.3605% for the one step ahead, and 3.09% off for the 4 steps ahead. The error could be
further reduced by updating the forecast with the new known values using the Green’s
function. If we look back at the graph for X,, DDS shows the prediction of points with
fairly large error bars. The prediction points are estimated at the end of the data series
with errors growing the farther from the predicted point. This prediction is not as useful
as the data of interest is within the data set and anything after should not be contributing

to shape drawing aspects.

54

ii. FREQUENCY, DAMPING RATIO, POWER (VARIANCE) CONTRIBUTION:

Table 21. Frequency, Dampening Ratio, and Power Parameters

A 0.9983 | 0.4535
®n 2.6646*10"-4 0.1258
P 0.6943 | 1.5284
d 9.4697*10"3 | -18.1036
g 1 1

The parameters of the eye gaze coordinate vectors are similar to a spring-damper
system (Table 21); (see Appendix 1). The value of ¢ being equal to one represents a
critically damped system. The frequency may show the eye doing saccades over a portion
of the shape outline it is tracing. In this case the system is fairly quick reacting, with a
small frequency, and a critically damped system. It should be noted that the values of d,
and d, give us insight on the variance. There is a very large power contribution in d,
with a value equal to 9.4697 = 103; this is not preferred as it represents that our variance

is correlated with the system. This could be potentially lower with higher-order models.

55

iii. DISCUSSION:

The explanation of the DDS method in this thesis looked at the x gaze coordinate
data of a circle, other shapes can be found in Appendix 1. We fitted an ARMA(2,1)
model to the system but higher order models could have been used to help reduce some
of the errors and make a more compliant model. The model allows data collected just
from the x gaze coordinate values to predict the starting point for an x/y system and
therefore predict the shape without knowledge of the other vectors. The frequencies of
the system do not match the sampling frequency, meaning that we are sampling at high
enough rates to see effects of unknown frequencies. Theses frequencies may be from the
twitching of the user’s eyes or from some other unknown effect. High-order models may
first need to be run to see what the frequencies represent. The Green’s function also
leaves room for improvement, as it is slow to reach 0. A more ideal system would have a
quicker response with the Green’s function. Another advantage of the system is the
ability to predict a point midway into the data set. This can be implemented by processing
a collected data point while the system is still collecting data and then comparing the
future value to the predicted value to see which model it fits. Although the discussion for
this thesis is mostly based on the circle x coordinates the other parameters were looked at
as well, please see Appendix 1 for further discussion and processes on this data. The
Hough Transform was looked at as well and is summarized below with ARMA(4,3)

models; this discussion can be seen in Appendix 1 as well.

56

Summarizing all Shapes:

Circle:
x; = 1.4518x,_; — .4528x,_, + a, — 3.2289 * 10~%a,_; X
x; = 1.4280x;_1 — .4299x;_, + a; —.0346a,_, Y
Square:
x; = 1.4605x,_, — .4616x;_, + a; +.0264a,_; X
x; = 1.3803x,_, —.3818x;_, + a, —.0627a,_, Y
Triangle:

x; = 1.4971x,_, — 4977 x,_, + a, —.0180a,_; X
x; = 1.6836x,_, —.6840 x;_, + a;, —.2779a;_, Y

Summarized Hough Transform Results:

Circle:

xt = 9378 xt_l - .0512)6,;_2 + 0208 xt_3 - .0055xt_4 + at + 1.0223at_1

+.6001a,_, — 2.6224 x 10~ %a,_;
Square:

xt == 1.4977 xt_l - .8875xt_2 + .6115xt_3 - .2867 xt_4 + at - .0063 at_l + 1.9988

*10™°a,_, — 8.6367 * 107 %a,_5

57

Triangle:

xt = .24‘32xt_1 + 6255 xt_z + .1589xt_3 - 0380 xt_4 + at + 5676 at_l

+ 0815 Ai_»o + 2.6194 = 10_4(11_-_3

In summary, ARMA models were created for 3 shapes for both the x and y. The
Hough transforms had ARMA models created as well. They hide information that the
user can extract from using intuition on the system. This information could be the
saccades of the eye, or the frequency of the eye focusing on and off a point. The models
are also useful for real time forecasting. Using the developed models can help reduce the
amount of data that needs to be stored to represent these models, lending to faster
processing time. Although this thesis only touched on the surface of what is possible

using DDS, more can be done in future work.

58

CHAPTER SIX: EPISCLERAL VENOMANOMETER

i. INTRODUCTION:

The purpose of an episcleral venomanometer (Error! Reference source not
found.) is to draw information from the episcleral veins located in the eye. The episcleral
veins serve as collector channels for the outflow of aqueous humor and therefore an
increased pressure in the veins, which is correlated to an elevation of intraocular pressure
[63]. The episcleral venomanometer inflates a small air balloon, made from transparent
silicone rubber (General Electric RTV 615A), which makes contact with the surface of
the eye. The pressure is increased, affecting the air balloon, until the vessel becomes half
blanched. The half blanched point is when the color in the vein becomes pale; this is
slightly subjective (Figure 19, picture from source [63]). In Figure 19 the EV stands for
espicleral vien, the image on top is before the half blanched point and the image on the
bottom is when the half blanched point is reached. M is the meniscus of tear film and R is
the aiming ring associated with the surgical membrane. The pressure can be read from a
dial on the side of the device and is adjusted using an air sealed piston. The pressure
range can be accurately read between 5-30 mm Hg, with in vitro reproducibility at 2.4%

and in vitro intraobserver reproducibility at .7mm Hg for normal pressure [63].

Figure 19.

Figure 18. Episcleral Venomanometer

Espiceral Venous Pressure Pictures

59

60

Episcleral venous pressure (EVP) can be a sign of many health related issues. A
high EVP may indicate glaucomatous damage. High EVP may also be a sign of brain
damage or concussions. A portable venomanometer would therefore be useful at sporting
events or on a battlefield. The goal of creating an improved episcleral venomanometer is
that it can be easily operated by one observer, require little to no calibration, be a
compact size, easy to mount, and provide good reproducibility. Current devices attach to
a slit lamp which is large and cumbersome. Another issue is getting consistent readings
between doctors for identification of the episcleral veins. The episcleral veins are
identified are vessels that are typically less mobile, deeper, and straighter than the

conjunctival vessels. This makes it easier to find the veins for the measurement.

ii. PROBLEM DESCRIPTION:

A problem with the current technique is that the observer may have repeatability
and reproducibility but the difference between two observers may be significant [64]. In a
clinical study the interobserver reproducibility test shows that the results of the two
observers may differ by 1.2 mm Hg and that overall on average one observer obtained
values that were .7 mm Hg higher [64]. The major issue with measuring EVP is that it
has an anatomic nature. Between observers they may select different blood vessels to
focus on which may create different readings. The reason this occurs is due to the higher
pressure to collapse superficial veins along with deep-seated vessels that are located near

the exiting of the sclera (see Figure 20).

61

lens zonules sterior
ens capsule

posterior
chamber

cornea

anterior
chamber

pupil)
optic nerve

sclera

anterior

retina
lens capsule lens

Figure 20. Basic Anatomy of the Human Eye

The other issue is selecting the contact point between the EVP and the eye. This is
usually a personal choice, and most doctors choose when it is half blanching at the end
point. When you measure past the halfway point the measurements are prone to
variability and falsely elevated readings. In order to account for these issues a standard
should be set. For refrence look at the difficulty of finding the half blanched point in
Figure 19. This standard could be in the form of the exact color for the when the vessel

was blanched using methods of computer vision.

62

iii. SOLUTION:

a. ITERATION 1:

In order to overcome the challenges and requirements of getting consistent
readings; an Episcleral Venomanometer EV-310 was obtained from EyeTech. Under the
supervision of University of Nebraska Medical Center (UNMC) ophthalmology faculty
the device was retrofitted to allow improvements. These improvments were designed in a
way to record what measurments the doctor was using when the half blanched point was
reached, with the hope of being able to use recorded pressure and images for comparison

without the need for large machinery that affected previous recording methods.

The first improvement was the ability to capture images of the eye without
needing to use large and expensive equipment. In order to accomplish this goal a
Raspberry Pi Zero (Figure 21) was chosen for the computing in a Linux environment.
The Raspberry Pi Zero is a small board (65 mm x 30 mm x5 mm), which allows the
device to be mounted on the back of the Episcleral Venomanometer. The camera chosen
was the Raspberry Pi Camera Board v2 at 8 megapixels. This is a special type of camera
that allows direct communication with the Raspberry Pi, while also being quite small. It
is capable of 3280x2464 pixel static images and supports video at 1080p 30 fps, 720p 60

fps, and 640x480p and 90 fps.

63

IOOOOOOOOOOOOOOOOOOOO
DOOOOOOOOOOOOOOOOOOO

Figure 21: Raspberry Pi Zero

The placement of the camera needed to be in line with the view through the
episcleral venomanometer; this obstructed the view point of the user. In order to account
for this a touchscreen was added to the back of the episcleral venomanometer to allow
live footage of what the camera is seeing. The chosen screen is the Adafruit PiTFT 2.8”
touchscreen display (Figure 22); this was chosen for its size and ability to directly
communicate with the Raspberry Pi over Serial Peripheral Interface (SPI). A nice feature
of this screen is that it allows communication through 4 push buttons and the resistive
touchscreen, meaning you don’t need a keyboard and mouse to communicate with the

device.

64

%)

U93.43§ yono|/n
ByZX0ZE_,8'C

itd hasaqdsey .o;
131

x i |
Q. &
" m ”)
“ 4
o I
: E;. >
=
A ,\

(

Figure 22: Adafruit PiTFT 2.8" Touchscreen

The add-ons to the device were made from 3D printed plastic and designed to fit
to the existing device through the attachment of only one bolt. This would allow for easy

assembly and would work on any existing devices without modification.

Originally the device was just configured to take photos that saved to system
memory. Also this version had a very large 10X zoom lens that allowed movement of
both the camera and lens; (Figure 23). The movement ended up being more than required
and the lens was too large in size and without sufficient zoom. Images, however, were

clear and the idea was a good proof of concept.

Figure 23. Iteration 1

65

66

b. ITERATION 2:

The next iteration aimed to fix the movement of camera and lens to be concentric
and allow only small movements axially. To ensure these requirements a new 3D-printed
body was made. This new body attached very similarly to iteration 1 with the difference
of including some lips that allowed the device to be supported also from the front, Figure
24. This increased overall stability of the base. The electronics bay was also printed to be
removable and allow different electronics to be slid onto the back of the device, Figure

25. Easy attachment points were added for future attachments.

Figure 24: Lipped and Groove Back Plate

67

Figure 25: Electronics Bay

The zoom was increased to 25X, and a smaller lens was chosen. This version
suffered from problems with both lighting and focus of the camera. At this point the
camera was changed from taking pictures to taking video. This change required an
external USB drive to store video footage, along with heavy reworking of the

programming.

68

Figure 26: Iteration 2

In these changes a new feature was added, providing a digital readout of what
pressure the device was reading. This was done by making an attachment that mounted a
potentiometer with the axis of the pressure adjustment wheel, as seen in Figure 27.
Functiong like an encoder, when the potentiometer wheel turned, a small custom Arduino
read the potentiometer and then using serial communication, told the Raspberry Pi the
pressure value. The buttons on the touchscreen were set up to allow easy calibration of
the potentiometer to get accurate pressure readings each time. The buttons in order from
left to right mean exit program, set low pressure (0 mm Hg), set high pressure (30 mm

Hg), and record video.

69

Figure 27. Potentiometer Arm

Another improvement of this iteration was the inclusion of an adapter attachment
to a tripod. The stand was a camera tripod that had custom mounting to attach the device
via a loc-line tube. Loc-line tube is a plastic modular tube that can hold its shape and be
easily moved and configured into new positions, Figure 28. The idea for this tube was to
hold the device steady on the tripod while allowing the doctor to move the device into
position. The tubing, although powerful, was not strong enough at long lengths. To
reinforce the tubes, small bendable metal rods were inserted into the tube. Although this
fixed the issue with the tubes being too easily bent, it now made the tubes more difficult
to do fine alignment. Another setback was that the wires’ added weight created too much
moment on the tripod and would cause it to tip. The tripod also proved to be too large and

was often in the way during testing.

70

Figure 28: Loc-Line Tubing

The next issue was lighting. This was a consistent issue throughout the whole
project. Too much light would overexpose the camera and make all the images too white.
Another issue was that due to the contact of the eye with the inflated balloon and the
contact of the camera with the device, when the eye is pressed hard into the device all
light is blocked, making the image too dark to see. Through the various different
iterations the best lighting has been achieved using a diffused LED light at an angle of 45
to 60 degrees from the contact point with the eye. Due to the requirement that only one
person is conducting the measurements; this can create an awkward testing procedure
without a slit lamp, as the doctor would need to adjust the light and pressure while

keeping the device in place.

71

c. ITERATION 3:

The next iteration set out to fix some of the issues related to focus and zoom. To
address the zoom and focus a pocket microscope with adjustable focus and zoom was
purchased. The pocket microscope was a Carson MicroBrite led lighted 20X-40X zoom
pocket microscope that was of small form factor, Figure 29. The pocket microscope was

then mounted with the camera.

Figure 29. Carson MicroBrite Pocket Microsocpe

The issue with this version was that if the device was shifted off its intended
placement, the view through the microscope was in the wrong area, Figure 30. Lighting
was good and so was focus when it was in view, but it was hard to keep it consistently in

one place with the size of the image on screen. To solve this issue, digital zoom was

72
simulated by turning off portions of the camera sensor and expanding the resulting image
on the screen. This allowed a small improvement in frame-rate without a noticeable

difference in perceived quality.

Figure 30. Iteration 3

73

d. ITERATION 4:

This iteration focused on fixing the stand and keeping the microscope in one place
to allow for easier and more consistent viewing. The microscope was disassembled and
rebuilt in a custom 3D-printed housing that mounted directly to the frame of the device.
This meant that we were now always getting the same view. The stand was replaced with
a microphone stand, specifically the JamStands Mic Stand with round base, Figure 31.
The round base was chosen over the tripod style base due to tripping hazards and the
excess of room the tripod needed would make it difficult to put close to an operating
table. A 19” metal gooseneck was chosen to replace the loc-line to provide more stability,
Figure 31. The gooseneck advertises the ability to hold up to 2.5 Ib at its end, after
weighing the device it came in at just 2.2 Ib meaning the stand could support it. To
support the base of the microphone stand a 9 Ib weight was added to the base. The weight
was needed more as reassurance to ensure the device not to tip over, even at extreme

angles.

74

Figure 31. JamStand and Gooseneck

This version of the device also incorporated the features of “zoom” and all of the
software updates from previous versions while also including a side-mounted light to
allow for illumination of the eye. The focus and zoom mechanics were preserved from

iteration 3, but both were stiffened to not allow accidental turning of the wheels.

75

Figure 32. Iteration 4

After testing of this iteration it was discovered that the most useful information is
taken from the 0X to around 12X zoom range. This meant that our current device was
zooming in too far and becoming blurry for the portions of the eye we wished to view as
we were doing around 20X-40X manual zoom with a small amount of “digital zoom” on
top of that. Also during testing the correct lighting was discovered to be along the
membrane balloon that touches the eye with a direct light source instead of a diffuse light
source. More parameters were also decided such as the need for the gooseneck to stop in
place after moving. The other critique was that the ball joint near the device allowed for

too much movement. The want for an autofocus was also expressed; this is difficult as the

76
PiCam being used is a fixed focus camera and display using H.264 video file streaming

techniques might not allow other cameras to be compatible.

77

e. ITERATION 5:

The main goal of this iteration was to decide if a new camera was needed or if the
PiCam could be reworked to meet the standards set out. After researching compatible
cameras it was found that the majority of the compatible cameras were web cameras,
with a small subsection of some cameras being USB digital microscopes. Finding a
camera that allowed zoom that did not allow manual adjustment was unsuccessful with
the exception of a few products that were in the $300-400 range that had little to no
documentation of working with the Raspberry Pi. This lead to research on how the rest of
the webcams were handling zoom. A majority of the standard webcams were handling
the zoom optically with some using a software focus and others using hardware focus.
Another caveat of many of these cameras was that the maximum resolution was only 2
MP before using zoom. Knowing the other cameras were only going to be at 2
megapixels lead to the reconsideration of using the PiCam, which has a Sony IMX219 8

megapixel sensor, for its higher resolution.

Using the original PiCam, the microscope and extra lens were removed. The
digital zoom was adjusted in software to allow a more customized zoom using the

following function (Eqg. 10).

camera.crop(x,y,w,h) (10)

where x and y are the location of the start of a rectangle of width w and height h. All
parameters are between 0 and 1. To achieve true zoom Eqg. 10 is modified and the

following formula is used.

78

camera.crop(z,z,1-2*z,1-2*z), where z is the percentage of zoom.

This formula was used to get the camera zoom to be useful for the 0-12X zoom
that was required. A small shift in the x and y position was also implemented to focus on
a certain portion of the screen. The focus of the camera still being fixed needed to be at a
distance away to still allow the image to be in focus. The PiCam V2 has a lens of f=3.0
mm, /2.0 with a field of view of 62.2 x 48.8 degrees. The full frame SLR lens equivalent
is 29 mm; [65]. The lens can be adjusted for better focus by carefully scrapping off the
glue that holds the threads of the lens and turning the lens assembly clockwise. This
allows focusing as close as 25 mm or .94252 inches with the side effect of becoming a
wide angle lens. This adjustment was not needed as simply moving the lens farther by a

few centimeters adjusted the focus enough to be adequate.

Improvements were also done to the stand. The gooseneck was supported with
rubber heat shrink tubing. Also the stand height was shortened to allow easier access to a
patient on a table. To shorten the stand height the orginal microphone stand was cut with
a Dremel tool and then placed back together. Iteration 5 was successful and more simple
than other iterations; (see Figure 33 and Figure 34). Lighting was included via a flexiable

reading light.

Figure 33. Iteration 5

79

80

Figure 34. Iteration 5 Physical Model

81

CHAPTER SEVEN: CONCLUSIONS

i. CONCLUSION OF GAZE VECTOR SHAPE BASED RECOGNITION

In this thesis, the concept of gaze-based HRI was expanded to allow the inclusion
of shape-based command recognition. The experiments showed that the detection of
mouse-drawn shapes and eye gaze-drawn shapes were comparable. The method was
validated on a small humanoid robot with a set of shape-based commands, as well as on a
custom-built wheeled robot. Eye-based commands will prove to be beneficial in
interfacing with robots. This approach has many advantages over blink-based command
input. Blinks can be difficult to count and easily confused, whereas shapes are more
natural and can vary in size for the intensity of the command. This system is easily
accessible for disabled and elderly people who may lack the motor skills necessary to
control technology by other means. By combining the gaze-based shape method with
blinks for program indicators, the amount of commands and interactions grow to provide
greater command options and independence for the user. Another option for adding more
commands is the location of the starting corner of a shape. For a square that would allow
4 different starting locations, and with the addition of drawing clockwise or
counterclockwise with size differnces, allows for a wide variety of shape possibilities

from only a small amount of shape based patterns.

More users and results are being processed to allow a large database of user
shapes to be logged. From these logged results different techniques and specifications can

be tested on large populations of data. Machine learning or Taguchi method may be

82
implemented to determine the best tuning procedure. Future work will include testing
with impaired subjects, along with testing procedures to properly adjust weights in the

algorithm for each subject.

ii. CONCLUSION OF DESIGN OF AN IMPROVED EPISCLERAL

VENOMANOMETER:

In conclusion the design of an improved episcleral venomanometer took many
iterations. The cross discipline project required direct interation between
ophthalmologist, researchers, and engineering. Although the parameters and requirements
changed and adapted as the project went on, further knowledge on what was required and
needed in a typical operation was gained. The final product is only a small fraction of the
cost of the full device, as seen in Table 22. For only $263.54 any episcleral
venomanometer can be easily improved to allow live recording of both pressure and what
the surgeon sees. When the device itself is already $950.00 and the alternatives require
large bulky machinery, this is a relative bargain. Assembly to the device is easy and only

required one existing screw to attach the electronics.

The success of iteration 5 lead to the creation of an identical device for further
subject testing. New footage will be recorded and there is the possibility to have greater

accuracy and understanding of the episcleral pressure with the video recordings.

83

Table 22. Bill of Materials for Venomanometer Iteration 5

MName Producer Price Quanity Total Price
Electronics:

Raspberry Pi Zero - Version 1.3 Adafruit 35.00 1 35.00
32Ghb FlashDrive Samsung 510.99 1 510.99
16 Gb Micro 5D SandDisk 58.24 1 58.24
Raspberry Pi Zero v1.3 Camera Cable Adafruit $5.95 1 $5.95
Raspberry Pi Camera Board v2 - 8 Megapixels Adafruit 529.95 1 529.95
Short USBE Cable 15cm CableCreation 54.99 1 54.99
5V 2.4A Switching Power Supply w/ 20AWG 6' MicroUSE Cable |Adafruit $7.95 1 $7.95
ZerodlU - 4 Port USB Hub for Raspberry Pi Zero v1.3 Adafruit 59.95 1 $9.95
USB wifi Adapter Edimax $7.99 1 57.99
Innovation Board UNL Makers Club 59.00 1 59.00)
PIiTFT Plus Assembled 320x240 2.8" TFT + Resistive Touchscreen |Adafruit 534.95 1 534.95
Total Electronics Cost 5134.96
Construction:

Coolant Hose Connector 3/4" Loc-Line 56.42 1 56.42)
LDR 3/4-in dia Black Iron Cap Fitting Lowe's 51.74 1 51.74
15-MSCRBL100 Mic Stand JamStands §27.99 1 §27.99
19" Gooseneck OnStage 57.19 1 57.19
#413/4" Bolts Lowe's 51.25 1 51.25
Gardner Bender 22.2mm 6-in Heat Shrink Tubing Lowe's 53.98 1 53.96
|1UI Ib Weight Cap Barbell $8.42 1 $8.42|
3D Printing Cost Stratasys Maojo $5.50 13.02 571.61
Total Construction Cost 5128.58)
Surgical Instuments:

Cost of Episcleral Venomanometer EyeTech $950.00 1| 5950.00
Total Cost of Electronics and Construction 5263.54
Total Cost of Device 51,213.54

84

ACKNOWLEDGEMENT:

| would like to thank my advisor Dr. Nelson. Dr. Nelson has shown time and time
again that he is committed to making, creating, and inspiring students to reach new
heights of academic excellence. He does this in all aspects of life, both in and out of the
classroom. He helped me do my best throughout my academic career. Through his help
we were able to submit a paper and present at the IEEE/ASME MESA 2016 conference
in Auckland, New Zealand. Much of the content from that paper made its way into my
thesis. These sort of opportunities and professional advancement were things that | would
not have been able to achieve without his expertise in both the field, and his continual
involvement in me as a student. I am so thankful for what he has contributed, and am

excited to see the greatness that he will continue to inspire in others.

I would also like to thank the NSF for the funding that went into the eye gaze
shape based recognition research, as well as the NRI funding and UNMC involvement in

the research and study of an improved Episcleral Venomanometer.

85

Works Cited

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

M. Bollini, S. Tellex, T. Thompson, N. Roy and D. Rus, "Interpreting and Executing Recipes
with a Cooking Robot," In Experimental Robotics, pp. 481-495, 2013.

M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mosenlechner, D. Pangercic, T. Ruhr and M.
Tenorth, "Robotic Roommate Making Pancakes," 11th IEEE-RAS International Conference on
Humanoid Robots (Humanoids), pp. 529-536, 2011.

S. Miller, J. V. D. Berg, M. Fritz, T. Darrell, K. Goldberg and P. Abbeel, "A Geometric
Approach to Robotic Laundry Folding," The International Journal of Robotics Research, vol.
32, no. 2, pp. 249-267, 2012.

A. Ramisa, G. Alenya, F. Moreno-Noguer and C. Torras, "Using Depth and Appearance
Features for Informed Robot Grasping of Highly Wrinkled Clothes," IEEE International
Conference on Robotics and Automation (ICRA), pp. 1703-1708, 2012.

M. Ciocarlie, K. Hsiao, A. Leeper and D. Gossow, "Mobile Manipulation through an Assistive
Home Robot," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 5313-5320, 2012.

H. Nguyen, A. Jain, C. Anderson and C. C. Kemp, "A Clickable World: Behavior Selection
through Pointing and Context for Mobile Manipulation," IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 787-793, 2008.

C.-H. King, T. L. Chen, A. Jain and C. C. Kemp, "Towards an Assistive Robot that
Autonomously Performs Bed Baths for Patient Hygiene," IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 319-324, 2010.

S. K. Banala, S. H. Kim, S. K. Agrawal and J. P. Scholz, "Robot Assisted Gait Training with
Active Leg Exoskeleton (ALEX)," IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 17, no. 1, pp. 2-8, 2009.

P. Malcolm, W. Derave, S. Galle and D. D. Clercq, "A Simple Exoskeleton that Assists
Plantarflexion can Reduce the Metabolic Cost of Human Walking," PloS one, vol. 8, no. 2,
2013.

[10] R. Sparrow and L. Sparrow, "In the Hands of Machines? The Future of Aged Care," Minds

86
and Machines, vol. 16, no. 2, pp. 141-161, 2006.

[11] Y. S. Choi, "A Study of Human-Robot Interaction with an Assistive Robot to Help People with
Severe Motor Impairments," 2009.

[12] A. Jain and C. C. Kemp, "EL-E: An Assistive Mobile Manipulator that Autonomously Fetches
Objects from Flat Surfaces," Autonomous Robots, vol. 28, no. 1, pp. 45-64, 2010.

[13] L. P. Reis, R. A. Braga, M. Sousa and A. P. Moreira, "A Flexible Interface for an Intelligent
Wheelchair," Robot Soccer World Cup, pp. 296-307, 2009.

[14] Researchnester.com, "Mechanical Keyboard & Switch Market : Global Demand Analysis &
Opportunity Outlook 2023," ICT & Electronics, 1 Febuary 2017. [Online]. Available:
http://www.researchnester.com/reports/mechanical-keyboard-switch-market-global-
demand-analysis-opportunity-outlook-2023/190. [Accessed 6 June 2017].

[15] R. Mead and M. J. Mataric, "Toward Robot Adaptation of Human Speech and Gesture
Parameters in a Unified Framework of Proxemics and Multimodal Communication," IEEE
International Conference on Robotics and Automation (ICRA) Workshop on Machine
Learning for Social Robots, 2015.

[16] A. Aly and A. Tapus, "A Model for Synthesizing a Combined Verbal and Nonverbal Behavior
based on Personality Traits in Human-Robot Interaction," 8th ACM/IEEE International
Conference on Human-robot interaction, pp. 325-332, 2013.

[17] K. Anderson and P. W. McOwan, "A Real-Time Automated System for the Recognition of
Human Facial Expressions," IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 36, no. 1, pp. 96-105, 2006.

[18] J. Saldien, K. Goris, B. Vanderborght, J. Vanderfaeillie and D. Lefeber, "Expressing Emotions
with the Social Robot Probo," International Journal of Social Robotics , vol. 2, no. 4, pp. 277-
289, 2010.

[19] M. V. d. Bergh, D. Carton, R. D. Nijs, N. Mitsou, C. Landsiedel, K. Kuehnlenz, D. Wollherr, L.
V. Gool and M. Buss, "Real-Time 3D Hand Gesture Interaction with a Robot for
Understanding Directions from Humans," IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), pp. 357-362, 2011.

[20] L. Sartori, C. Becchio and U. Castiello, "Cues to Intention: The Role of Movement
Information," Cognition, vol. 119, no. 2, pp. 242-252, 2011.

87

[21] P. K. Artemiadis and K. J. Kyriakopoulos, "EMG-based Control of a Robot Arm Using Low-
Dimensional Embeddings," IEEE Transactions on Robotics, vol. 26, no. 2, pp. 393-398, 2010.

[22] N. Bu, M. Okamoto and T. Tsuji, "A Hybrid Motion Classification Approach for EMG-based
Human—Robot Interfaces Using Bayesian and Neural Networks," IEEE Transactions on
Robotics, vol. 25, no. 3, pp. 502-511, 2009.

[23] L. Bi, X.-A. Fan and Y. Liu, "EEG-based Brain-Controlled Mobile Robots: A Survey," IEEE
Transactions on Human-Machine Systems, vol. 43, no. 2, pp. 161-176, 2013.

[24] F. Galan, M. Nuttin, W. Lew, P. W. Ferrez, G. Vanacker, J. Philips and J. D. R. Millan, "A
Brain-Actuated Wheelchair Asynchronous and Non-invasive Brain-Computer Interface for
Continuous Control of Robots," Clinical Neurophysiology, vol. 119, no. 9, pp. 2159-2169,
2008.

[25] marketsandmarkets.com, "Eye Tracking Market by Type (Mobile & Remote), by Application
(Medical Diagnostics, HCI, Research, & Virtual Reality), by Industry (Marketing, Healthcare,
Transportation, Communication & Entertainment) and by Geography - Global Trend &
Forecast to 2020," marketsandmarkets.com, November 2015. [Online]. Available:
http://www.marketsandmarkets.com/Market-Reports/eye-tracking-market-
144268378.html. [Accessed 6 June 2017].

[26] D. Cox and J. DiCarlo, "Device and Method for Tracking Eye Gaze Direction". United States
of America Patent 11/386.878.

[27] C. H. Morimoto and M. R. Mimica, "Eye Gaze Tracking Techniques for Interactive
Applications," Computer Vision and Image Understanding, vol. 98, no. 1, pp. 4-24, 2005.

[28] Z. Zhu and Q. Ji, "Eye and Gaze Tracking for Interactive Graphic Display," Machine Vision
and Application, vol. 15, pp. 139-148, 2004.

[29] K. R. Park, "A Real-Time Gaze Position Estimation Method based on a 3-D Eye Model," IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37, pp. 199-212,
2007.

[30] E. D. Guestrin and M. Eizenman, "General Theory of Remote Gaze Estimation Using the
Pupil Center and Corneal Reactions," IEEE Transactions on Biomedical Engineering, vol. 53,
pp. 1124-1133, 2007.

[31] R. Barea, L. Boquete, L. M. Bergasa, E. Lopez and M. Mazo, "Electro-Oculographic Guidance
of a Wheelchair Using Eye Movements Codification," The International Journal of Robotics

88
Research, vol. 22, no. 7-8, pp. 641-652, 2003.

[32] E. A. Hoffman and J. V. Haxby, "Distinct Representations of Eye Gaze and Identity in the
Distributed Human Neural System for Face Perception," Nature Neuroscience, vol. 3, no. 1,
pp. 80-84, 2000.

[33] N. J. Emery, "The Eye Have It: The Neuroethology, Function and Evolution of Social Gaze,"
Neuroscience & Biobehavioral Reviews, vol. 24, no. 6, pp. 581-604, 2000.

[34] K. K. Kampe, C. D. Frith, R. J. Dolan and U. Frith, "Psychology: Reward Value of
Attractiveness and Gaze," Nature, vol. 413, no. 6856, pp. 589-589, 2001.

[35] B. Fink and I. Penton-Voak, "Evolutionary Psychology of Facial Attractiveness," Current
Directions in Psychological Science, vol. 11, no. 5, pp. 154-158, 2001.

[36] R. Jacob and K. S. Kam, "Eye Tracking in Human-Computer Interaction and Usability
Research: Ready to Deliver the Promises," Mind, vol. 2, no. 3, p. 4, 2003.

[37]). H. Goldberg and X. P. Kotval, "Computer Interface Evaluation using Eye Movements:
Methods and Constructs," International Journal of Industrial Ergonomics, vol. 24, no. 6, pp.
631-645, 1999.

[38] T. W. Victor, J. L. Harbluk and J. A. Engstrom, "Sensitivity of Eye-Movement Measures to in-
Vehicle Task Difficulty," Transportation Research Part F: Traffic Psychology and Behaviour,
vol. 8, no. 2, pp. 167-190, 2005.

[39] N. B. Sarter, R. J. Mumaw and C. D. Wickens, "Pilots’ Monitoring Strategies and
Performance on Automated Flight Decks: An Empirical Study Combining Behavioral and
Eye-Tracking Data," Human Factors: The Journal of the Human Factors and Ergonomics
Society, vol. 49, no. 3, pp. 347-457, 2007.

[40] C. S. Lin, C. Ho, W. Chen, C. Chiu and M. Yeh, "Powered Wheelchair Controlled by Eye-
Tracking System," Optica Applicata, vol. 36, no. 2-3, p. 401, 2006.

[41] P. S. Gajwani and S. A. Chhabria, "Eye Motion Tracking for Wheelchair Control,"
International Journal of Information Technology, vol. 2, pp. 185-187, 2006.

[42] J. Ma, Y. Zhang, A. C. A and F. Matsuno, "A Novel EOG/EEG Hybrid Human-Machine
Interface Adopting Eye Movements and ERPS: Application to Robot Control," IEEE
Transactions on Biomedical Engineering, vol. 62, no. 3, pp. 876-889, 2015.

89

[43] B. H. Kim, M. Kim and S. Jo, "Quadcopter Fight Control Using a Low-Cost Hybrid Interface
with EEG-based Classification and Eye Tracking," Computers in Biology and Medicine, vol.
51, pp. 85-92, 2014.

[44] C. Staub, S. Can, B. Jensen, A. Knoll and S. Kohlbecher, "Human-Computer Interfaces for
Interaction with Surgical Tools in Robotic Surgery," 4th IEEE RAS & EMBS International
Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 81-86, 2012.

[45] N. P. Noonan, G. P. Mylonas, J. Shang, C. J. Payne, A. Darzi and G. Z. Yang, "Gaze Contingent
Control for an Articulated Mechatronic Laparoscope," 3rd IEEE RAS and EMBS International
Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 759-764, 2010.

[46] X. Zhang, S. Li, J. Zhang and H. Williams, "Gaze Contingent Control for a Robotic
Laparoscope Holder," Journal of Medical Devices, vol. 7, no. 2, p. 020915.

[47] S. Li, J. Zhang, L. Xue, F. J. Kim and X. Zhang, "Attention-Aware Robotic Laparoscope for
Human-Robot Cooperative Surgery," IEEE International Conference on Robotics and
Biomimetics (ROBIO), pp. 792-797, 2013.

[48] S. Li, X. Zhang, F. J. Kim, R. D. d. Silva, D. Gustafson and W. R. Molina, "Attention-Aware
Robotic Laparoscope based on Fuzzy Interpretation of Eye-Gaze Patterns," Journal of
Medical Devices, vol. 9, no. 4, p. 041007, 2015.

[49] C. A. Nelson, X. Zhang, J. Webb and S. Li, "Fuzzy Control for Gaze-Guided Personal
Assistance Robots: Simulation and Experimental Application," International Journal on
Advances in Intelligent Systems, vol. 8, no. 1-2, pp. 77-84, 2015.

[50] D. Puanhvuan and Y. Wongsawat, "Semi-automatic P300-based brain-controlled
wheelchair," ICME International Conference on Complex Medical Engineering (CME), Kobe,
Japan, pp. 455-460, 2012.

[51] P. P. Caffier, U. Erdmann and P. Ullsperger, "Experimental evaluation of eye-blink
parameters as a drowsiness measure," European Journal of Applied Physiology, vol. 89, no.
3-4, pp. 319-325, 2003.

[52] G. Cardona and N. Quevedo, "Blinking and driving: the influence of saccades and cognitive
workload," Current Eyes Research, vol. 39, no. 3, pp. 239-244, 2014.

[53] K. Grauman, M. Betke, J. Gips and G. R. Bradski, "Communication via eye blinks - detection
and duration analysis in real time," IEEE Computer Society Conference on Computer Vision

90
and Pattern Recognition (CVPR), vol. 1, pp. 1010-1017, 2001.

[54] "Gazepoint GP3 Eye Tracker- Gazepoint," Gazepoint, [Online]. Available:
http://www.gazept.com/product/gazepoint-gp3-eye-tracker/. [Accessed 6 April 2016].

[55] B. Li, B. Mettler and J. Andersh, "Classification of Human Gaze in Spatial Guidance and
Control," IEEE International Conference on Systems, Man, and Cybernetics (SMC) in
Kowloon, China, pp. 1073-1080, 2015.

[56] "Find out more about NAO," Aldebaran Robotics, [Online]. Available:
https://www.aldebaran.com/en/cool-robots/nao/find-out-more-about-nao. [Accessed 4
April 2016].

[57] "Recognizing objects — NAO Software 1.14.5 documentation," Aldebaran Robotics,
[Online]. Available: http://doc.aldebaran.com/1-
14/software/choregraphe/tutos/recognize_objects.html. [Accessed 4 April 2016].

[58] C. Harris and M. Stephens, "A combined corner and edge detector," Alvery Vision
Conference, vol. 15, p. 50, 1988.

[59] J. lingworth and J. Kittler, "A survey of the Hough transform," Computer Vision Graphics
Image Process, vol. 44, no. 1, pp. 87-116, 1988.

[60] S. M. Pandit and K. P. Rajurkar, "Data-Dependent Systems Approach to Solar Energy
Simulation Inputs," Journal of Solar Energy Engineering, vol. 105, pp. 461-463, 1983.

[61] K. P. Rajurkar and J. L. Nissen, "Data-Dependent Systems Approach to Short-Term Load
Forecasting," IEEE Transaction on Systems, Man, and Crybernetics, Vols. SMC-15, no. 4, p.
532, 1985.

[62] H. Xin, J. A. DeShazer, J. J. R. Feddes and K. P. Rajurkar, "Data Dependent Systems Analysis
of Stochastic Swine Energetic Responses," J therm Biol, vol. 17, no. 4.5, pp. 225-234, 1992.

[63] M. Mori, Episcleral Venomanometer EV-310, Boca Raton, Florida: EYETECH LTD., 2016.

[64] R. C. Zeimer, D. K. Gieser, J. T. Wilensky, J. M. North, M. M. Mori and E. E. Odunukwe, "A
Practical Venomanometer: Measurment of Episcleral Venous Pressure and Assessment of
the Normal Range," Arch Ophthalmol, vol. 101, pp. 1447-1449, 1983.

[65] "Rpi Camera Module," elinux.org, 11 July 2017. [Online]. Available:
http://elinux.org/Rpi_Camera_Module#Technical_Parameters_.28v.1_board.29.

91

92

APPENDIX 1:

Stocachstic Equations:

The roots of the equation can be found as follows

(1—-¢1B - ¢232 — = ¢pB") = (1—-4B)(1 - 2;B) ...(1 = 4,B)

A; = eH4 i=1.2,....n, where n is the number of data points

with the complex conjugate pair of roots giving the natural frequency and damping ratio.
H1, fo = —Cwy ijwnm

A spring-damper system can be represented as follows which can help give the required

parameters for a dynamic system.

(D + 20w, + WDx(t) = 3£ (1)

The dynamics of the difference equation model are seen in the Green’s function:
G = ga2] + goAl + - gn

with the distinct roots of A; given in the coefficients g, calculated by

Y = A220, — 23730, — - — 0,_1)
g =
“ Ty e — A4)

The Green’s function can also be expressed as:

(o]
xt = Z Gjat_j
=0

To compare multiple models against each other the RSS and FO and Fcrit are

calculated and used in the F-test, explained below.

Comparing ARMA(2n,2n-1) model with ARMA(2n+2,2n+1)

Hypothesis: Hy = ¢2p11 = 0 = @ansz = = = O = Oznyq
_ A4 . _
= aoap TOND

N=# of observations or data

A;=Sum of Squares of Errors (SSE) of lower order model
A,=SSE of higher order model

F(s,N-y) > F distribution with S and N- y DOF

y =total # of parameters to be estimated for higher order model
s=Difference in # of parameters of two models

The equations of a spring-damper system fit closely with the base A(2) model
equation. The A(2) model can then be expressed similar within the spring-damper

equations to helps better describe the parameters.

xt == 1.4518xt_1 - .4’528xt_2 + at - 3.2289 * 10_5at_1

93

1
(D? 4+ 2{w,D + w)x(t) = 7/ ©

Uy, Uy = —Cwy t wpy/ 72— 1

ut _ euzt

G(t) =
ul - u2
o7
) = w2 — ud) [uze™s® — u e"2°], where s = AK
1%2*"1 2
2
O-Z
0) =
v(0) T

VarArma(2,1) y, = d,A¥ + d A%

o7
dy = 2 2 2
ug(uy —u3)
Al = eulA
2
dp = > 2 2
Uy (uy —uy)
Az = euZA

¢1 = Al + AZ = eulA'l'euZA

¢2 = _AIAZ = e(u1+u2)A

02+ 2P, +1=0

6, =—P++P?2-1

94

(T + A (1= 23) +up (1 +A5) (1 - A7)
B ug A (1 - /1%) —up Ay (1 — /1%)

Another method that can be used for updating is using the Green’s function with these

equations:

(D) = Giag + G101 + Gryppar_p + -

e (D = Gragy + 2,1+ 1)

95

96

Circle Y:

Order | RSS #UAC>3 | FO<>Fcrit

0,0 208407.3 105

1,0 4408.698 8 | 232082.63408>3.8604
2,1 3678.01 1] 32.3822>2.6231

4,3 3665.435 1| .41598<2.3903

6,5 3648.789 1| .48151<1.9576

The model of interest is the ARMA(2,1) model. This was chosen due to the
ARMA (4,3) model showing not much improvement in the reduction of errors proven

with the F test .41598<2.3903.

After finding the parameters of the equation the values are ¢, = 1.4280, ¢, =

—.4299 and 6; = .0346. Looking at a ARMA(2,1) model that appears in this form:

Xt = P1Xe—q + Poxe_5 + ar — 01a,_1 ARMA(2,1)

Plugging in the values from the program:

xt = 1.4280xt_1 - .4’299xt_2 + at - .034’6at_1 ARMA(Z,].) Y

ARMA(2,1) Model with Mean Estimation: YDotT

100 Po = 4261.8555; i = 238.1018; Xbar = 238.0974; N = 493
0Or - —"'I.-.__h_- - H‘I- —_
I - h"‘_‘__ R o
-100 , , , , , , , — ,
50 100 150 200 250 300 350 400 450
obs
ED =7. Ef“lﬁ RS = 3678.0103 ' ' ' ' ' :
— |:|. I'WLI"J'J'«'--#T.Mf e HsfﬂqJ«* S— |,n---rl)‘ e ﬂ 1rH—-M
_ZD [1 1 1 1 1 1 i
50 100 150 200 250 300 350 400 450
obs
= [#UAC>3 =1
]
™ 1
‘\I_‘ D A= _--_-.._.\..-._—h.-,,-l—\'\.—._.--h’.hn——.-—q@,.— T e Y e v el
+
B q ' ' ' ' ' '
T 0 20 40 60 80 100 120

lag

97

ARMA(2,1) Model with Mean Estimation: YDotT

T I T r T er -

TR T
g i
T} T Sy —

10 20 30 40 a0 &0 7o 80 80 100

— e —

—_— e — e

005 01 015 02 025 03 035 04 045 05
Frequency (1/Unit{ A))

Square X:

Filled Shape

340

320

300

280

260

240

20T

200 T

180

Raw Data Points

160

200 250 300 350 400

450

99

450

X.t data over Time

400

350

[,
H‘.j - _ﬂ—’*‘ﬂl-'-\rl ‘-IIF"' '.

| |

Foopeee, i L1
250 ;7 "‘r“‘“rm‘ rl A

200

I '.",;_-"I

PR

e

100 200 300

400 800

340

280 | [

2401 [l
220T |,r"-._ fr

200 T |

180 [l

|]
320 | I . /j 1"|Jr r~|
/

¥.t data over Time

|

160

Looking at the x portion:

200 300 400

100

Order | RSS #UAC>3 | FO<>Fcrit

0,0 3823161 105

1,0 4998.585 24 | 404839.7739>3.8591
2,1 3812.761 5| 54.6349>2.6218

4,3 3813.234 4 1 -0.016204<2.389

6,5 3692.074 52.1207>1.9562

20,19 3535.125 3| .77853<1.4993

The model of interest is the ARMA(2,1) model. This was chosen due to the
ARMA (4,3) model showing not much improvement in the reduction of errors proven

with the F test -.016204 <2.389.

After finding the parameters of the equation the values are ¢, = 1.4605, ¢, =

—.4616 and 6, =-.0264 Looking at a ARMA(2,1) model that appears in this form:

Xe = P1Xp_q + Poxp_p + ap — 01a,_; ARMA(2,1)

Plugging in the values from the program:

x; = 1.4605x,_; — .4616x,_, + a, + .0264a,_, ARMA(2,1) X

101

200
100

-100

102

ARMA(2,1) Model with Mean Estimation: XDotT

1o = 7264.5751; i = 323 042; Xbar = 323.0414; N = 531 '
i bar = 323 N=03]
L e g M‘*_H J
[P
50 100 150 200 250 300 350 400 450 500
obs
o2 =7.2348; RSS = 3812.7611 ' ' ' ' '
_;AhMH_J(MJTANJIh_*M r..;.Lh«L,_ e -"L"r‘ e .whf"r‘{* T‘WM
50 100 150 200 250 300 350 400 450 500
obs
#UAC=3=5
e A e e e e =
20 40 60 80 100 120

ARMA(2,1) Model with Mean Estimation: XDotT

2 - i
G 1
0
0 10 20 30 40 50 60 70 80 90 100
j
“a 300 -
E. e
] T e— . o, —_ - - .
o 200 -
+
<" 100 ' ' ' ' '
0 5 10 15 20 25 30 35 40 45 5D
lead
100
l\-\"———_
w”é 100 — s
10-10 ' ' ' ' ' ' ' ' '
005 01 015 02 025 03 035 04 045 05
Frequency (1/Unit{ A))
Square Y:
Order | RSS #UAC>3 | FO<>Fcrit
0,0 1882863 112
1,0 4588.306 4| 216961.4329>3.8591
2,1 4084.694 1] 21.6583>2.6218
4,3 4062.313 1|.72038<2.389
6,5 3973.808 1] 1.8103<1.9562

103

104
The model of interest is the ARMA(2,1) model. This was chosen due to the
ARMA (4,3) model showing not much improvement in the reduction of errors proven

with the F test.72038<2.389.

After finding the parameters of the equation the values are ¢, = 1.3803, ¢, =

—.3818 and 6, =.0627. Looking at a ARMA(2,1) model that appears in this form:

Xt = P1Xe—q + Poxe5 + ar — 01a,_1 ARMA(2,1)

Plugging in the values from the program:

x, = 1.3803x,_, — .3818x,_, + a, — .0627a,_, ARMA(2,1) Y

ARMA(2,1) Model with Mean Estimation: YDntT

= 35?2 TE-‘-'I-‘] p= 235 TE-E-E- Xbar = 235 7684; N 531
1|:|'|:|' T -
> 0r e ' ﬂH‘”‘*. ;
E— A
=100 &
50 100 150 200 250 300 350 400 450 500
obs
20 T ?EDE RSS -'-1-DE-'-1- 594-'-1- I h
m-'- 0 .f*.-rn,,_._n ...,T',.r "Mm- -h-"h‘*‘"ﬂ"*b- A, JHIIP\'TﬂH AJ’MHHY\- R |
=207
50 100 150 200 250 300 350 400 450 500
obs
m
= 1 HUAC=3 =
o
+ 0 e T e
B :
- 0 20 40 60 820 100 120

105

ARMA(2,1) Model with Mean Estimation: YDotT

v e -

e et TTTTTT T e

10 20 30 40 a0 &0 7o 80 80 100

5 10 15 20 25 30 35 40 45 50

005 01 015 02 025 03 035 04 045 05
Frequency (1/Unit{ A))

106

Triangle X:

Filled Shape

Raw Data Points
400

350 " \'-_!_\ :__,3_@&_(; r_ﬂ,ﬁ‘;’: ﬁ&'ﬁ‘:ﬂr F
300 1

250 B

200 | vl

150 | L=
@ a>
100 | ® ﬁ‘ﬁ’

50 | &

100 1500 200 250 300 350 400 450 500 550 600

600

550

500

450

400

350

300

250

200

150

100

400

350

300

250

200

150

100

a0

X.t data over Time

g ' ' ' ' e,
| | e
L b / i
] b,-'
- J
- 1)ll E
| |
|II r,_f
"I)
L [, | J
J
L Py I_J i
: I
- "__ [~ 4
| /
| !
L | [i
'., /
L k) p J
I v
: '. WV |
] h"'-_"_\’}"_‘.
0 100 200 300 400 500 600
Y.t data over Time
I HI"» TAN o -
. . w
If 1 /‘f"ﬂ/ !
.1 |'
™y {
{
|
i
L I i
" |
3 ﬁ'-\. -'l]
'._ III,'
! |
1& ng
L \ i
l.-/ 1 |
I L]
] 100 200 300 400 500

600

107

108

Order | RSS #UAC>3 | FO<>Fcrit

0,0 14977486 117

1,0 1090.939 62 | 822464.498>3.8581
2,1 7648.735 6 | 61.7099>2.6209

4,3 7631.536 4] .31157<2.3881

6,5 7551.766 2 | .8818<1.9553

The model of interest is the ARMA(2,1) model. This was chosen due to the
ARMA (4,3) model showing not much improvement in the reduction of errors proven

with the F test .31157<2.3881.

After finding the parameters of the equation the values are ¢p; = 1.4971, ¢, =

—.4977 and 6, =.0180. Looking at a ARMA(2,1) model that appears in this form:

Xe = P1Xp_q + Poxp_p + ap — 01a,_; ARMA(2,1)

Plugging in the values from the program:

xe = 1.4971x,_; — 4977 x,_, + a; — .0180a,_; ARMA(2,1) X

-200
-400

109

ARMA(2,1) Model with Mean Estimation: XDotT

——

200 o = 25889.5623; ;'= 373.1784; Xbar = 373.1763; N =561 ' '

50 100 450 200 250 300 350 400 450 500 550
obs

gy bbb

"13 T32; 'RSS = 7648.7352

50 100 150 200 250 300 350 400 450 500 550

obs
HUAC=3 =6
g i RN
20 40 60 8O 100 120

ARMA(2,1) Model with Mean Estimation: XDotT

iA I e —

Frequency (1/Unit{ A))

10 20 30 40 50 60 70 8O 80 100
]
5 10 15 20 25 30 35 40 45 50
lead
pos 01 015 02 025 03 035 04 045 05

110

Triangle Y:

Order | RSS #UAC>3 | FO<>Fcrit

0,0 6086454 117

1,0 6025.892 42 | 565068.1576>3.8581
2,1 4519.056 2 | 61.9088>2.6209

4,3 4545.927 2 | -0.8172<2.3881

6,5 4555.786 2 | -0.55328<1.9553

The model of interest is the ARMA(2,1) model. This was chosen due to the
ARMA (4,3) model showing not much improvement in the reduction of errors proven

with the F test-.8172 <2.3881.

After finding the parameters of the equation the values are ¢p; = 1.6836, ¢, =

—.6840 and 6; =.2779. Looking at a ARMA(2,1) model that appears in this form:

Xt = P1Xe—q + Poxe_5 + ar — 01a,_1 ARMA(2,1)

Plugging in the values from the program:

xt = 1.6836xt_1 - .684’0 xt_z + at - .2779at_1 ARMA(Z,].) Y

111

ARMA(2,1) Model with Mean Estimation: YDotT

50 100 150 200 250 300 350 400 450 500 550
obs
o~ = 8.1132; RSS = 4510.056 ' ' '
L - . A, ~..\,.q.... o J .JL +’~l
Lyb..h]--,_,H ! e || [N L‘Hr-"'il“ i H»—Jru.‘
50 100 150 200 250 300 350 400 450 500 550
obs
#UAC=3 =2
e e e
1] 20 40 60 80 100 120

112

113

ARMA(2,1) Model with Mean Estimation: YDotT

_1_ﬂ"‘ P Ty 1 S TR
0 10 20 30 40 50 60 70 8O 80 100
]

= —— .o

1] 5 10 15 20 25 30 35 40 45 50
lead

‘H-._______

0 pos 01 015 02 025 03 035 04 045 05

Frequency (1/Unit{ A))

114

Summary:

Circle:

x; = 1.4518x,_; — .4528x,_, + a, — 3.2289 * 10~ °a,_; X

.Xt == 1.4280xt_1 - .4299Xt_2 + a’t - .034‘6at_1 Y

Square:

xt = 1.4605xt_1 - .4’616xt_2 + at + .0264at_1 X

x, = 1.3803x,_, —.3818x,_, + a, — .0627a,_; Y

Triangle:

X = 1.4971xt_1 —.4977 Xt—2 + a; — .0180at_1 X

xt = 1.6836xt_1 - 684‘0 Xt_z + at - .2779at_1 Y

115

HOUGH TRANSFORMS:

Now to look at the information from the Hough Transforms. For this we will be looking

at the perfect transforms to try and make a model from them.

Circle:
Hough Transform
2000 : _
8000 g
7000 ”
% 6000 H
é 5000 H
= |‘
© 4000 |
2 |
E 3000 f
= s |
2000 [Fﬂ‘ |
1000 | _/Jﬁjkf |
E ..f'_'w - A L I,. . .
’ 50 100 150 200 250
Radius
Order | RSS #UAC>3 | FO<>Fcrit
0,0 337927303.6 19
1,0 2266248.977 1| 20782.2621>3.8884
2,1 10855181.76 1| 71.4264>2.6504
4,3 9552763.11 0| 6.5784>2.4184
6,5 9702242.796 0 | -0.072797<2.4194

116
The model of interest is the ARMA(4,3) model. This was chosen due to the
ARMA (6,5) model showing not much improvement in the reduction of errors proven

with the F test -.072797<2.4194.

Xt = P1Xp_1 + PaXp3 + P3Xp_3 + Paxe gy +ar — 6010r1 — 00,5 — 03043

ARMA(4,3)

Plugging in the values from the program: ¢, = .9378 ¢, = —.0512 ¢; =.0208

¢, = —.0055 0, = —1.0223 6, = —.6001 85 = 2.6224 10~°

xt = 9378 xt_l - .0512xt_2 + 0208 Xt_3 - .0055xt_4, + at + 1.0223at_1 +

6001a,_, — 2.6224 + 10~%a,_;

117

ARMA(4,3) Model with Mean Estimation: data
4000 py, = 718932.4388; ;1 = 626.2935; Xbar = 626.2933; N = 283 1
-

= 2000 F 1
s ' oy A

50 100 150 200 250
obs

500 :ai = 5544 B086: RSS = 1524522.3???'
» Y 1w
o 0 -"qr'"""""-"lilll"'rlll'.'-ur'1l||lvrlilr1 lrll‘ﬂ ,'.J 1'|.J1 fili'h-'ﬂ‘ I\luql""‘il R L

_5 DD 1 1 1 1 1
80 100 150 200 250
obs
ik : : : : : :
— 1 | #LAC=3 =1
=
o I'.
..-_'-L 0 P ""——""_..__,.ﬂ-_-"""'@"-\.._. e T T
.-.E -1 1 1 1 1 1 1
- 0 10 20 30 40 50 60

lag

118

ARMA(4,3) Model with Mean Estimation: data
2 [HEm - - - - - - - -
o 1 TV .
ﬂﬂ] T AR Ty T EEOEE YIS
0 L
0 10 20 30 40 50 60 70 80 0 100
i
H_":L 1DDD T T T T T T T T _I_ —
a = == =
] —— -
) 0= i
+ B
o e R
x _1 DDD 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
lead
1010 T T T T T i T T T
i 105 '_\\‘_,___]
m ___—______——._
10°) ') '))) ')
0 005 01 015 02 025 03 035 04 045 05

Frequency (1/Unit{ A))

119
Square:

Hough Transform

9000
8000 | I

7000 -

()]
=
=
=

[
=]
=]
=]

Mumber of Occurrences
£ I
[o]
=]
= =

2000 S

e Ll .

D00 [t et e A o f st e |
Rt W " "fl
i

0 20 40 60 80 100 120 140 160 180 200

Radius
Order | RSS #UAC>3 | FO<>Fcrit
0,0 336688422.3 15
1,0 29835388.44 2 | 2046.6887>3.8886
2,1 22677807.01 0 | 20.6205>2.6507
4,3 21786042.43 0| 1.9648<2.4187
6,5 21951324.39 0| .77774<1.9879

The model of interest is the ARMA(4,3) model. This was chosen due to the
previous choosing of ARMA(4,3), although a ARMA(2,1) may have fit this model fine as

shown with the F-test.

120

Xt = P1Xe—q + GaXe—p + G3Xpz + Puxe s+ ar — 010, — 00,5 — 030;_3

ARMA(4,3)

Plugging in the values from the program: ¢p; = 1.4977¢, = —.8875 ¢; = .6115

$, = —.2867 6; = .0063 6, = —1.9988 x 1075 6, = 8.6367 10~

xt - 14977 xt_l - .8875xt_2 + .6115xt_3 - 2867 xt_4_ + at - 0063 at_l +

1.9988 x 10™°a,_, — 8.6367 * 10 %a,_;

ARMAM 3] Model with Mean Estlm ation: l:lata

40001, = 699478.3943: ¢ = 763.1874: Xbar = 763.1872: N = 203

~ 2000 | AN
}:: i H__(_/'\

oo’

0 _I*-/H"'““"H—\.._.--ﬂ-._.—r"_‘—""—_’ - e

———

20 40 60 80 100 120 140 160 180 200

obs
400 2 =.523El TEEE RSS = ‘1505559 9245
L 2001
o ot ||r.|_||ll,u,lrnﬂr-‘ .""”I,.""“J||||]wlf.llllf'lllﬂl ‘I IIIV'N'H""
=200
—4'}'} 1 1 1 1 1 1 1 1 1 1
20 40 60 a0 100 120 140 160 180 200
obs
m . .
S 1L #UAC=3 =1
o 3
A \
1 — T A L e = T e = T T T T
"_'|‘_" D \d ", _"‘-H._‘_ —
P :
- 1] 5 10 15 20 25 30 35 40 45

2 .
M1
0
0
]
H_":L 1DDD T T T T T T _l__ T
Er I . o J— — — o —
= -
- U R 1
+ T -
o - = = e —_— — e —
x _1 DDD 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
lead
1010
f.nii 08 o=l e T]
J“}{; 1 1 1 1 1 L 1 1 1
0 0.05 0.1 0.15 02 0.25 0.3 0.35 04 0.45 0.5

Frequency (1/Unit{ A))

121

Triangle:
Hough Transform
2000 ; ; : ,
\
1800 | ||
1600 | 'I' .y o ‘|
" WU b W’ﬁ"ﬁ" A
@ 1400 I
S | 1
£ 1200} |
§ 1000 | |,
[=} II
& 800 |
E |
= 600 \
|
400 | ".I
200 |
0 ; ; ; L ; ; '
0 20 40 60 80 100 120 140 160 180
Radius
Order | RSS #UAC>3 | FO<>Fcrit
0,0 92575038 43
1,0 1180447 0| 13471.7276>3.8955
2,1 1020838 0| 8.912>2.6574
4,3 1013129 0| .31767<2.4258
6,5 979087.7 0 | .86884<1.9956

The model of interest is the ARMA(4,3) model. This was chosen due to the

122

previous choosing of ARMA(4,3), although a ARMA(2,1) may have fit this model fine as

shown with the F-test.

123
Xt = P1Xe—q + GaXe—p + G3Xpz + Puxe s+ ar — 010, — 00,5 — 030;_3

ARMA(4,3)

Plugging in the values from the program: ¢, = .2432¢, = .6255 ¢p5; =

1589¢, = —.0380 0, = —.5676 6, = —.0815 0; = —2.6194 x 10~*

X¢ = .2432x,_4 +.6255 x;_, +.1589x,_3 —.0380 x;_, + a; +.5676 a;_1 +

.0815a,_, +2.6194 * 10™*a,_5

ARMAM 3) Mndel mth Mean Estlm atlnn l:lata

4000 [
-555145 209 m -533 3498: Xbar = 533 3¢95 N = 455
~ 2000 [,
¢ rf M,
D T
50 100 150 200 250 300 350 400 450
obs
500 TZ = 7631.0398; RSS = 3411477 0974
i+ \'. i S
a@ 0 I‘?‘wﬁ*nv)\alw* F‘JJrJi.,M g
-500 |
50 100 150 200 250 300 350 400 450
obs
o -
= 4 UAC=3=8
]
m !
‘\I_‘ _G--\-\-\._ e '\-_-\'_;a_\, P i — .-'\-\._E‘} P~ E— — P
7 I = —— == e e
E _1 1 1 1 1
T 0 20 40 60 BO 100

lag

124

ARMA(4,3) Model with Mean Estimation: data

-
M

ORIy ey 1
T

0 005 01 015 02 025 03 035 04 045 05
Frequency (1/Unit{ A))

Summarized Results:

Circle

xt = .9378 xt_l - .0512xt_2 + .0208 xt_3 - .0055xt_4_ + at + 1.0223at_1 +

6001a,_, — 2.6224 % 10~%a,_;

Square

x, = 14977 x,_, — .8875%,_, + .6115x,_5 — .2867 X;_, + a; — .0063 a,_, +

1.9988 * 10™°a,_, — 8.6367 * 10 %a,_4

125

Triangle

X = .2432xt_1 + 6255 Xe—2 + .1589xt_3 - 0380 Xt—g + a; + 5676 Ar_q +

0815 Ai_»o + 2.6194 = 10_4at_3

126

Appendix 2:

This appendix shows extra photos of the cad assembly.

Iteration 1;

128

Iteration 2:

129

Iteration 3:

131

Iteration 4:

133

135

Iteration 5:

138

139

APPENDIX 3:

This appendix holds all of the code required for the current version of the Shape
Detection program.

140

ShapeRecognGuiTest.m:

function varargout = ShapeRecognGuiTest (varargin)
% SHAPERECOGNGUITEST MATLAB code for ShapeRecognGuiTest.fig
SHAPERECOGNGUITEST, by itself, creates a new SHAPERECOGNGUITEST
r raises the existing
singleton*.

o0 o0 O oe

o

H = SHAPERECOGNGUITEST returns the handle to a new
SHAPERECOGNGUITEST or the handle to
the existing singleton¥*.

o° o

o

SHAPERECOGNGUITEST ('CALLBACK',hObject,eventData, handles, ...)
calls the local

% function named CALLBACK in SHAPERECOGNGUITEST.M with the given
input arguments.

o

% SHAPERECOGNGUITEST ('Property', 'Value',...) creates a new
SHAPERECOGNGUITEST or raises the

% existing singleton*. Starting from the left, property value
pairs are

% applied to the GUI before ShapeRecognGuiTest OpeningFcn gets
called. An

% unrecognized property name or invalid value makes property
application

% stop. All inputs are passed to ShapeRecognGuiTest OpeningFcn

via varargin.

o

o

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

©]

ne

oe

instance to run (singleton)"

o

o

See also: GUIDE, GUIDATA, GUIHANDLES

o\

Edit the above text to modify the response to help ShapeRecognGuiTest

oe

Last Modified by GUIDE v2.5 02-Aug-2016 15:08:44

% Begin initialization code - DO NOT EDIT
gui Singleton = 1;
gui State = struct('gui Name', mfilename,
'gui Singleton', gui_ Singleton,
'gui OpeningFcn', @ShapeRecognGuiTest OpeningFcn,

'gui OutputFcn', @ShapeRecognGuiTest OutputFcn,
'gui LayoutFcn', 1,
'gui Callback', (1
if nargin && ischar (varargin{l})
gul State.gui Callback = str2func(varargin{l})
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui_ State, varargin{:});
else
gul mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT

% —--—- Executes just before ShapeRecognGuiTest is made visible.
function ShapeRecognGuiTest OpeningFcn (hObject, eventdata, handles,
varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to ShapeRecognGuiTest (see
VARARGIN)

% Choose default command line output for ShapeRecognGuiTest
handles.output = hObject;

[

% Update handles structure

guidata (hObject, handles);

3% Clear all the data

echo off; %Doesn't display code the user doesn't need
clc; %Clears the command window For the User

clear vars; %Cleans up any previous data

global testNum;

testNum=1;

%% Set up all the images

SetupOverlay=imread ('CoMands\Overlay.PNG"') ;

imshow (SetupOverlay, 'Parent', handles.ShapeOverlay);
SetupOverlay=imread('CoMands\Circle.PNG") ;

imshow (SetupOverlay, 'Parent', handles.Circle);
SetupOverlay=imread ('CoMands\Square.PNG") ;

imshow (SetupOverlay, 'Parent', handles.Square);
SetupOverlay=imread ('CoMands\Triangle.PNG') ;

imshow (SetupOverlay, 'Parent', handles.Triangle);
SetupOverlay=imread ('CoMands\BRlank.PNG'") ;

imshow (SetupOverlay, 'Parent', handles.ShapeResult);
%% Information for the rest of the program

global inifilename;
inifilename='config\Settings.ini';
inputimage=SetupOverlay;

global imsize

imsize=size (inputimage) ;

o\

o\

uiwait (handles.figurel) ;

% —--- Outputs from this function are returned to the command line.

141

UIWAIT makes ShapeRecognGuiTest wait for user response (see UIRESUME)

142

function varargout = ShapeRecognGuiTest OutputFcn (hObject, eventdata,
handles)

% varargout cell array for returning output args (see VARARGOUT) ;

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
$ handles structure with handles and user data (see GUIDATA)

o

s Get default command line output from handles structure
varargout{l} = handles.output;

function TextResults Callback (hObject, eventdata, handles)

hObject handle to TextResults (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° oo

o

o

Hints: get (hObject, 'String') returns contents of TextResults as text
str2double (get (hObject, 'String')) returns contents of
TextResults as a double

o

% —--- Executes during object creation, after setting all properties.
function TextResults CreateFcn (hObject, eventdata, handles)

% hObject handle to TextResults (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

o\°

end

% —--—- Executes on button press in Start.

function Start Callback (hObject, eventdata, handles)

% hObject handle to Start (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global inifilename;

set (handles.TextResults, 'String', 'Drawing....');

SetupOverlay=imread ('CoMands\Blank.PNG") ;

imshow (SetupOverlay, 'Parent', handles.ShapeResult);

imshow (SetupOverlay, 'Parent', handles.ActualDrawn) ;
Calibration=cell2mat (inifile(inifilename, 'read', {'GazePointAPI"', 'Calibr
ation', 'Calibrate','d','"ERR'})); %Set Calibration to 1 for test
TotalBlinktime=cell2mat (inifile(inifilename, 'read', {'GazePointAPI', 'Cal
ibration', 'TotalBlinktime', 'd', 'ERR'})) ;%Reccomended setting is to be 8
[tx1l,tyl]=GazePointApi (Calibration, TotalBlinktime) ;

143

global recordX;
recordX=tx1l;
global recordY;
record¥=tyl;
set (handles.TextResults, 'String', 'Processing....');
[position]=FindtheCenter (txl,tyl,2); %Multiple options for What center
technique is used
NumAvG=cell2mat (inifile(inifilename, 'read', {'DataFilter', '"NumbertoAvg',
'Number', 'd', "ERR'})) ;
[x1,yl]=DataFilter(txl,tyl,position,NumAvG); %Standarddeviation filter
with average sum
[shape,Value]=ShapeRecognFnc (x1,yl,position);
set (handles.TextResults, 'String', strcat(shape,' with SPSE of
', num2str (Value))) ;
global SPSE;
SPSE=Value;
if strcmp (shape, 'Circle')==
SetupOverlay=imread ('CoMands\Circle.PNG") ;
imshow (SetupOverlay, 'Parent', handles.ShapeResult);
end
if strcmp (shape, 'Square')==
SetupOverlay=imread ('CoMands\Square.PNG") ;
imshow (SetupOverlay, 'Parent', handles.ShapeResult);
end
if strcmp (shape, 'Triangle')==
SetupOverlay=imread ('CoMands\Triangle.PNG') ;
imshow (SetupOverlay, 'Parent', handles.ShapeResult);
end
FilledImg=DISPXY (x1,y1l);
global TransferShape;
TransferShape=shape;

imshow (FilledImg, 'Parent', handles.ActualDrawn);

% —--- Executes on button press in OpenGazeControl.

function OpenGazeControl Callback (hObject, eventdata, handles)

% hObject handle to OpenGazeControl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
ProgramLaunher () ;

% —--- Executes on button press in Calibrate.

function Calibrate Callback (hObject, eventdata, handles)

% hObject handle to Calibrate (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
Calibration=1;

TotalBlinktime=1;

GazePointApi (Calibration, TotalBlinktime) ;

% —--- Executes on button press in EXIT.

function EXIT Callback (hObject, eventdata, handles)

% hObject handle to EXIT (see GCBO)

% eventdata reserved - to be defined in a future version of MATLARB
% handles structure with handles and user data (see GUIDATA)

close all

% —--—- Executes during object creation, after setting all properties.
function ActualDrawn CreateFcn (hObject, eventdata, handles)

% hObject handle to ActualDrawn (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

o

Hint: place code in OpeningFcn to populate ActualDrawn

oe

% —--- Executes on button press in robotsend.
function robotsend Callback (hObject, eventdata, handles)
hObject handle to robotsend (see GCBO)

o e oP
o\

oe

% handles structure with handles and user data (see GUIDATA)
global TransferShape;

Shape=TransferShape;

port=str2num(get (handles.PortTag, 'String'));
BaudRate=str2num (get (handles.BaudTag, 'String'));

set (handles.TextResults, 'String', 'Sending....');
SendRobot (Shape, port, BaudRate)

set (handles.TextResults, 'String', 'Ready!');

o 0P o° o° o° o

oe

oe

function PortTag Callback (hObject, eventdata, handles)
hObject handle to PortTag (see GCBO)

o° oe
o° oe

oe
oe

handles structure with handles and user data (see GUIDATA)

oe

oe
oe

Hints: get (hObject, 'String') returns contents of PortTag as text
str2double (get (hObject, 'String')) returns contents of
PortTag as a double

o\
o\

o d° o

o\

function PortTag CreateFcn (hObject, eventdata, handles)
% hObject handle to PortTag (see GCBO)

o\

o\

$ eventdata reserved - to be defined in a future version of MATLAB

eventdata reserved - to be defined in a future version of MATLAB

% eventdata reserved - to be defined in a future version of MATLAR

144

% —--- Executes during object creation, after setting all properties.

% % handles empty - handles not created until after all CreateFcns

% % Hint: edit controls usually have a white background on Windows.
5% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor'))
S set (hObject, 'BackgroundColor', 'white');
% end

% function BaudTag Callback (hObject, eventdata, handles)

% % hObject handle to BaudTag (see GCBO)
% % eventdata reserved - to be defined in a future version of MATLAB
$ % handles structure with handles and user data (see GUIDATAR)

o
o

Hints: get (hObject, 'String') returns contents of BaudTag as text
str2double (get (hObject, 'String')) returns contents of
BaudTag as a double

o
o

o 0o oP

o

function BaudTag CreateFcn (hObject, eventdata, handles)

hObject handle to BaudTag (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns
called

o° oe
o o

oe
oe

o

o
o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
et (0, '"defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

oe
oe

oe

o o W\

function UserID Callback (hObject, eventdata, handles)

hObject handle to UserID (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o oe

o\

o\

Hints: get (hObject, 'String') returns contents of UserID as text
str2double (get (hObject, 'String')) returns contents of UserID
as a double

o\

% —--- Executes during object creation, after setting all properties.
function UserID CreateFcn (hObject, eventdata, handles)
% hObject handle to UserID (see GCBO)

% eventdata reserved - to be defined in a future version of MATLABR

145

% —--—- Executes during object creation, after setting all properties.

% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

o\

end

% —--- Executes on button press in SaveResults.

function SaveResults Callback (hObject, eventdata, handles)

% hObject handle to SaveResults (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
$ handles structure with handles and user data (see GUIDATA)

IDNumber=get (handles.UserID, 'String');

global recordX;

trecordX=recordX;

global recordY;

trecordY=recordY;

global SPSE;

tSPSE=SPSE;

global testNum;

SaveToFiles (IDNumber, trecordX, trecordY, tSPSE, testNum) ;
testNum=testNum+l;

146

Settings.ini:
[ShapeRecogn]
{Image Resolution}
width=450

height=600

{Augmented Shape}
Marker=ON
Markersize=20
radius=45
LineWidth=5
Circle=ON
Square=ON

Triangle=ON

{Bound Size}

bounds=16

{Weighted Percentage}

Scalar=10

{Save File}

Save=0OFF

147

148
{Disp Results}
Percentages=OFF
NUMOFCORNERS=0OFF

SPSE=ON

{Create Results File}

ResultsFile=OFF

[Corner Detection]
{Harris}
MaxCorners=8
QualityLevel=.48

SensitivityFactor=.04

{SPSE WEIGHTS}
LOWCIRCLE=4
HIGHCIRCLE=6
LOWSQUARE=1
HIGHSQUARE=2
LOWTRIANGLE=1
HIGHTRIANGLE=2
LWEIGHT=1

HWEIGHT=2

149

[ShapeDetect]
{DataSet Options}

UseDataSet=ON

{Disp Results}
medval=OFF
diffarea=OFF
diffmeanvals=OFF

diffslopes=OFF

{MEDVAL}
BESTWEIGHT=3

OTHERWEIGHT=1

{Differnt Area}

Scale=4

{MeanValues}
howfar=1/3

Scale=4.5

{Slope}

avgpoints=5

150

howfar=3/5

scale=3

[FilterMaker]
{Correction Values}
Circle=0

Square=6

Triangle=6

[HoughAssist]
{Stationaryvalues}
topradius=2000

splits=10

[DataTableRead]
{ON OFF}
Data=OFF
{CurrentTest}

TESTNUM=1

{MASSTESER}
Tester=OFF

mintest=1

maxtest=60

[GazePointAPI]
{UseEyeGaze}
Data=ON
{Calibration}
Calibrate=2

TotalBlinktime=8

[DataFilter]
{NumbertoAvg}

Number=10

151

152

Inifile.m:

function varargout = inifile(varargin)

%$INIFILE Creates, reads, or writes data from/to a standard ini (ascii)
% file. Such a file is organized into sections

% ([section name]), subsections (enclosed by {subsection name}),
% and keys (key=value). Empty lines and lines with the first
non-empty

% character being ; (comment lines) are ignored.

% Usage:
% INIFILE (fileName, "new')

% Rewrites an existing file - creates a new, empty file.

% INIFILE (fileName, 'write', keys,<style>)
% Writes keys given as cell array of strings (see description

% the keys below). Optional style variable: 'tabbed' writes

% subsections and keys in a tabbed style to get more readable
% file. The 'plain' style is the default style. This only

% the keys that will be written/rewritten.

% INIFILE (fileName, 'deletekeys', keys)
% Deletes keys and their values - if they exist.

% [readsett, result] = INIFILE (fileName, 'read', keys)
% Reads the values of the keys where readsett is a cell array

strings and/or numeric values of the keys. If any of the
% is not found, the default value is returned (if given in
% 5-th column of the keys parameter). result is a cell array

% strings - one for each key read; empty if OK, error/warning
% string if error; in both cases an empty string is returned

% readsett{i} for the i-th key if error.
% [keys, sections, subsections] = INIFILE (fName, 'readall')

% Reads entire file and returns all the sections, subsections
% and keys found.

% Notes on the keys cell array given as an input parameter:

% Cell array of STRINGS; either 3, 4, or 5 columns.

% Each row has the same number of columns. The columns are:

% 'section': section name string (the root is considered
if

% empty)

% 'subsection': subsection name string (the root is

considered

153

% if empty)
% 'key': name of the field to write/read from (given
as
% a string).
% value: (optional) STRING or NUMERIC value (scalar
or
% matrix) to be written to the
% ini file in the case of 'write' operation
OR
% conversion CHAR for read operation:
% 'i' for integer, 'd' for double, 's' or
% ''" or not given for string (default).
% defaultValue: (optional) string or numeric value (scalar
or
% matrix) that is returned when the key is
ot
found or an empty value is found
when reading ('read' operation).
If the defaultValue is not given and the
ey

is not found, an empty value is returned.
It MUST be in the format as given by the
value, e.g. if the value = 'i' it must be
given as an integer etc.

EXAMPLE :

Suppose we want a new ini file, testl.ini with 4 fields,
including a
5x5 matrix (see below). We can write the 5 fields into the ini

A0 O° 00 A A° Jd° A° A X o° o° oo I

o

file

% using:

% x = rand(5); % matrix data

% inifile('"testl.ini', "new');

% writeKeys = {'measurement', 'person', 'name', 'Primoz Cermelj';...
% 'measurement', 'protocol', 'id',1; ...

% 'application','', 'description.ml', "'some..."'; ...

% 'application','', 'description.m2', 'some..."'; ...

% 'data', "', 'x"',x};

% inifile('testl.ini', 'write',writeKeys, 'plain');

% Later, you can read them out. Additionally, if any of them
won't

% exist, a default value will be returned (if the 5-th column is
given

% for all the rows as below).

% readKeys = {'measurement', 'person', 'name','', 'dJohn Doe'; ...

'measurement', 'protocol', 'id', 'i',0; ...
'application','', 'description.ml',"'', 'none'; ...
'application','', 'description.m2','', 'none'; ...
'data', "', 'x','d',zeros (5) };

readSett = inifile('testl.ini', 'read', readKeys);

o° o

o o° oe

154

o

o

Or, we can just read all the keys out
[keys,sections, subsections] = inifile(testl.ini, 'readall');

o° 0o oe

o\

NOTES: If the operation is 'write' and the file is empty or does

not

% exist, a new file is created. When writing and if any of the
section

S or subsection or key does not exist, it creates (adds) a new one.
% Everything but value is NOT case sensitive. Given keys and values

% will be trimmed (leading and trailing spaces will be removed) .

% Any duplicates (section, subsection, and keys) are ignored. Empty
% section and/or subsection can be given as an empty string, '',

% but NOT as an empty matrix, [].

% Numeric matrices can be represented as strings in one of the two
form:

% '12 3;4 5 6" or '1,2,3;4,5,6"' (an example).

% Comment lines starts with ; as the first non-empty character but

% comments can not exist as a tail to a standard, non-comment line as
% is also used as a row delimiter for matrices.

% This function was tested on the win32 platform only but it should

% also work on Unix/Linux platforms. Since some short-circuit
operators
% are used, at least Matlab 6.5 (R13) is required.

% First release on 29.01.2003

% (c) Primoz Cermelj, Slovenia
% Contact: primoz.cermelj@gmail.com
% Download location:

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectI
d=2976&0bjectType=file

% Version: 1.4.2
% Last revision: 12.01.2007

% Bug reports, questions, etc. can be sent to the e-mail given above.
% ACKNOWLEDGEMENTS: Thanks to Diego De Rosa for a suggestion/fix how

read the value when the key is found but empty.

s [v.1.4.2] 12.01.2007

155

% — FIX: When in read mode and a certain key is found but the value is
% empty, the default value will be used instead.

% [v.1.4.1] 12.01.2006
% — FIX: Some minor refinements (speed,...)

% [v.1.4.0] 05.12.2006
% - NEW: New 'readall' option added which reads all the sections,
% subsections and keys out

s [v.1.3.2 - v.1.3.5] 25.08.2004

% - NEW: Speed improvement for large files - using fread and fwrite
instead
% of fscanf and fprintf, respectively

% - NEW: Some minor changes
% - NEW: Writing speed-up
% - NEW: New-line chars are properly set for pc, unix, and mac

% [v.1.3.1] 04.05.2004

% — NEW: Comment lines are detected and thus ignored; comment lines are
% lines with first non-empty character being ;

% - NEW: Lines not belonging to any of the recognized types (key,

% comment, ...) raise an error.

$ [v.1.3.0] 21.04.2004
% — NEW: 2D Numeric matrices can be read/written

% - FIX: Bug related to read operation and default value has been
removed

% [v.1.2.0] 30.04.2004
% - NEW: Automatic conversion capability (integers, doubles, and

% added for read and write operations

% [v.1.1.0] 04.02.2004
% - FIX: 'writetext' option removed (there was a bug previously)

% [v.1.01b] 19.12.2003
% - NEW: A new concept - multiple keys can now be read, written, or

deleted

% ALL AT ONCE which makes this function much faster. For
example, to

% write 1000 keys, using previous versions it took 157 seconds
on a

% 1.5 GHz machine, with this new version it took only 0.9
seconds.

% In general, the speed improvement is greater when a larger
number of

% read/written keys is considered (with respect to the older
version) .

o\

- NEW: The format of the input parameters has changed. See above.

o\

o\

[v.0.97] 19.11.2003

156

% — NEW: Additional m-function, strtrim, is no longer needed

% [v.0.96] 16.10.2003
% — FIX: Detects empty keys

% [v.0.95] 04.07.2003
% - NEW: 'deletekey' option/operation added

% - FIX: A major file refinement to obtain a more compact utility ->
% additional operations can "easily" be implemented

% [v.0.91-0.94]
% - FIX: Some minor refinements

% [v.0.90] 29.01.2003
$ — NEW: First release of this tool

global NL CHAR;

% Checks the input arguments
if nargin ==
disp ('INIFILE v1.4.2");
disp('Copyright (c) 2003-2007 Primoz Cermelj');
disp('This is FREE SOFTWARE') ;
disp('Type <help inifile> to get more help on its usage');
return
elseif nargin < 2
error ('Not enough input arguments');
end

fileName = varargin{l};
operation = varargin{2};

if (strcmpi (operation, 'read')) | (strcmpi (operation, 'deletekeys'))
if nargin < 3
error ('Not enough input arguments.');
end
if ~exist (fileName)
error(['File ' fileName ' does not exist.']);
end
keys = varargin{3};
[m,n] = size(keys);
if n < 3
error ('Keys argument must have at least 3 columns for read
operation');

end
for ii=1:m
if isempty(keys(ii,3)) | ~ischar (keys{ii,3})
error ('Empty or non-char keys are not allowed.');
end
end

elseif (strcmpi (operation, 'write'))
if nargin < 3

157

error ('Not enough input arguments');

end
keys = varargin{3};
if nargin < 4 || isempty(varargin{4})
style = 'plain';
else
style = varargin{4};
if ~(strcmpi(style, 'plain') | strcmpi(style, 'tabbed')) |

~ischar (style)
error ('Unsupported style given or style not given as a
string');

end
end
[m,n] = size(keys);
if n< 4
error ('Keys argument requires 4 columns for write operation');
end
for ii=l:m
if isempty(keys(ii,3)) | ~ischar (keys{ii,3})
error ('Empty or non-char keys are not allowed.');
end
end

elseif (strcmpi (operation, 'readall'))

%

elseif (~strcmpi (operation, 'new'))
error (['Unknown inifile operation:
end
if nargin >= 3
for ii=1:m
for 33=1:3
if ~ischar (keys{ii,jj})
error ('All cells from the first 3 columns must be given
as strings, even the empty ones.');
end
end
end
end

operation "''''1);

% Sets the new-line character/string
if ispc
NL CHAR = '\r\n';
elseif isunix
NL CHAR = '\n';
else
NL CHAR = '\r';
end

readsett = [];
result = [];

158

if strcmpi (operation, 'new')
tfh = fopen(fileName, 'w');
if fh == -1
error(['File: '"'' fileName ''' can not be (re)created']);
end
fclose (fh);
return

elseif (strcmpi (operation, 'readall'))

[keys, sections, subsections] = readallkeys (fileName) ;
varargout (1) = {keys};

varargout (2) = {sections};

varargout (3) = {subsections};

return

elseif (strcmpi (operation, 'read'))
result = cell(m,1);

if n >= 4

conversionOp = keys(:,4); % conversion operation: 'i',

'd', or 's' ('') - for each key to be read

else

conversionOp = cellstrings(m,1);
end
if n < 5

defaultValues = cellstrings(m,1);
else

defaultvValues = keys(:,5);
end
readsett = defaultValues;

keysIn = keys(:,1:3);
[secsExist, subsecsExist, keysExist, readValues, so,eo] =
findkeys (fileName, keysIn) ;
ind = find(keysExist);
% For those keys that exist but have empty values, replace them
with
% the default values
if ~isempty (ind)
ind empty = zeros(size(ind));
for kk = l:size(ind, 1)
ind empty(kk) = isempty(readValues{ind(kk)});

end
ind(find (ind empty)) = [];
readsett (ind) = readValues (ind) ;

end

Q

% Now, go through all the keys and do the conversion if the
conversion

% char is given
for ii=1:m

159

if ~isempty(conversionOp{ii}) & ~strcmpi (conversionOp{ii},'s")
if strcmpi (conversionOp{ii},'i') |
strcmpi (conversionOp{ii}, 'd")
if ~isnumeric (readsett{ii})

readsett{ii} = str2num(readsett{ii});
end
if strcmpi (conversionOp{ii},'i")
readsett{ii} = round(readsett{ii});
end
if isempty(readsett{ii})
result{ii} = [num2str(ii) '-th key ' keysIn{ii, 3}
'or given defaultValue could not be converted using '''
conversionOp{ii} ''' conversion'];
end
else
error(['Invalid conversion char given: '
conversionOp{ii}]);
end
end
end
varargout (1) = {readsett};
varargout (2) = {result};
return

% WRITES key-value pairs to an existing or non-existing
% file (file can even be empty)

elseif (strcmpi (operation, 'write'))

ifm< 1
error ('At least one key is needed when writing keys');

end

if ~exist (fileName)
inifile(fileName, 'new');

end

for ii=1:m % go through ALL the keys and convert them to strings
keys{ii,4} = n2s(keys{ii,4});

end

writekeys (fileName, keys,style);

return

elseif (strcmpi (operation, 'deletekeys'))
deletekeys (fileName, keys) ;

else
error ('Unknown operation for INIFILE.');
end

160

function

[secsExist, subSecsExist, keysExist,values, startOffsets,endOffsets] =

findkeys (fileName, keysIn)

% This function parses ini file for keys as given by keysIn. keysIn is

a cell

% array of strings having 3 columns; section, subsection and key in

each row.

% section and/or subsection can be empty (root section or root

subsection)

% but the key can not be empty. The startOffsets and endOffsets are

start and

% end bytes that each key occuppies, respectively. If any of the keys

doesn't exist,

% startOffset and endOffset for this key are the same. A special case

is

% when the key that doesn't exist also corresponds to a non-existing
section and non-existing subsection. In such a case, the startOffset

nd

% endOffset have wvalues of -1.

oe

©

o\°

nKeys = size(keysIn,l);
nKeysLocated = 0;

secsExist = zeros (nKeys,1);
subSecsExist = zeros (nKeys,1l);
keysExist = zeros (nKeys,1);
keysLocated = keysExist;
non-existing) is LOCATED

number of keys

number of keys located

if section exists (and is non-empty)
if subsection...

if key that we are looking for exists
if the key's position (existing or

o 0P o° o°

o\°

values = cellstrings(nKeys,1l); % read values of keys (strings)
startOffsets = -ones(nKeys,1l); % start byte-position of the keys
endOffsets = -ones(nKeys,1); % end byte-position of the keys
keyInd = find(strcmpi (keysIn(:,1),"')); % key indices having []

section (root section)

line = [];

lineN = 0; % line number
currSection = '';

currSubSection = '';

fh = fopen(fileName, 'r');
if fh == -1
error(['File: '"'' fileName ''' does not exist or can not be
opened.']);
end

161

try
%--- Searching for the keys - their values and start and end
locations in bytes

while 1

posl = ftell (fh);

line = fgetl (fh);

if line == -1 $ end of file, exit
line = [];
break

end

lineN = lineN + 1;

[status, readValue, readKey] = processiniline(line);

if (status == 1) % (new) section found

[

% Keys that were found as belonging to any previous section
are now assumed as located (because another
% section is found here which could even be a repeated one)
keyInd = find(~keysLocated &
strcmpi (keysIn(:,1),currSection));
if length (keyInd)

oe

keysLocated (keyInd) = 1;

nKeysLocated = nKeysLocated + length (keyInd);
end
currSection = readValue;
currSubSection = '';

[

% Indices to non-located keys belonging to current section
keyInd = find(~keysLocated &

strcmpi (keysIn(:,1),currSection));
if ~isempty (keyInd)
secsExist (keyInd) = 1;
end
pos2 = ftell (fh);
startOffsets (keyInd) = pos2+1;
endOffsets (keyInd) = pos2+1;
elseif (status == 2) % (new) subsection found

[

% Keys that were found as belonging to any PREVIOUS section
% and/or subsection are now assumed as located (because
another
% subsection is found here which could even be a repeated
one)
keyInd = find(~keysLocated &
strcmpi (keysIn(:,1),currSection) & ~keysLocated &
strcmpi (keysIn(:,2),currSubSection));
if length (keyInd)
keysLocated (keyInd) = 1;
nKeysLocated = nKeysLocated + length (keyInd);
end
currSubSection = readValue;
% Indices to non-located keys belonging to current section
and subsection at the same time
keyInd = find(~keysLocated &
strcmpi (keysIn(:,1),currSection) & ~keysLocated &
strcmpi (keysIn(:,2),currSubSection));

162

if ~isempty (keyInd)

subSecsExist (keyInd) = 1;
end
pos2 = ftell (fh);
startOffsets (keyInd) = pos2+1;
endOffsets (keyInd) = pos2+1l;
elseif (status == 3) % key found
if isempty (keyInd)
continue % no keys from 'keys' - from
section-subsection par currently in
end
currKey = readValue;
pos2 = ftell (fh); % the last-byte position of the
read key - the total sum of chars read so far

for ii=1l:length (keyInd)
if strcmpi(keysIn(keyInd(ii),3),readKey) &
~keysLocated (keyInd (ii))

keysExist (keyInd(ii)) = 1;
startOffsets (keyInd(ii)) = posl+l;
endOffsets (keyInd(ii)) = pos2;
values{keyInd(ii)} = currKey;
keysLocated (keyInd(ii)) = 1;
nKeysLocated = nKeysLocated + 1;
else
if ~keysLocated(keyInd(ii))
startOffsets (keyInd(ii)) = pos2+1;
endOffsets (keyInd(ii)) = pos2+1;
end
end
end

[

if nKeysLocated >= nKeys % if all the keys are located
stop the searching
break
end
else % general text found (even empty
line(s))
if (status == -1)
error (['unknown string found at line
num2str (lineN)]);
end
end
%--- End of searching
end
fclose (fh);
catch
fclose (fh) ;
error (['Error parsing the file for keys: ' fileName ': ' lasterr]);

163

function writekeys (fileName, keys,style)

Writes keys to the section and subsection pair

If any of the keys doesn't exist, a new key is added to

% the end of the section-subsection pair otherwise the key is updated
(changed) .

% Keys 1s a 4-column cell array of strings.

o

o

global NL CHAR;

RETURN = sprintf('\r'");
NEWLINE = sprintf (' \n');

[m,n] = size(keys);
if n < 4

error ('Keys to be written are given in an invalid format.');
end

[

% Get keys position first using findkeys

keysIn = keys;

[secsExist, subSecsExist, keysExist, readValues, so,eo0] =
findkeys (fileName, keys(:,1:3));

% Read the whole file's contents out
fh = fopen(fileName, 'r');

if fh == -1
error(['File: '"'' fileName ''' does not exist or can not be
opened.']);
end
try
dataout = fread(fh, 'char=>char')"';
catch

fclose(fh);
error (lasterr);
end
fclose (fh);

Q

%--- Rewriting the file -> writing the refined contents
fh = fopen(fileName, 'w');
if fh == -1
error(['File: '"'' fileName ''' does not exist or can not be
opened.']);
end
try
tabl = [];
if strcmpi(style, 'tabbed')
tabl = sprintf('\t");
nd
Proper sorting of keys is cruical at this point in order to avoid
inproper key-writing.

o (D

o

o

Find keys with -1 offsets - keys with non-existing section AND
subsection - keys that will be added to the end of the file
fs = length(dataout) ; % file size in bytes

o

end

164

nAddedKeys = 0;

ind = find(so==-1);
if ~isempty(ind)
so(ind) = (fs+10); % make sure these keys will come to the
when sorting
eo(ind) = (fs+10);
nAddedKeys = length(ind) ;
end

% Sort keys according to start- and end-offsets
[dummy, ind] = sort(so,1l);

so = so(ind);

eo = eo(ind);

keysIn = keysIn(ind, :);

keysExist = keysExist (ind);

secsExist = secsExist (ind);

subSecsExist = subSecsExist (ind);

readValues = readValues (ind) ;

values = keysIn(:,4);

% Find keys with equal start offset (so) and additionally sort them
% (locally). These are non-existing keys, including the ones whose
section and subsection will also be added.

oe

nKeys = size(so,1);
fullInd = 1l:nKeys;
ii = 1;
while ii < nKeys
ind = find(so==so(ii));

if ~isempty(ind) && length(ind) > 1
n = length(ind);
from = ind (1) ;
to = ind(end);
tmpKeys = keysIn(ind,:);
[tmpKeys, ind2] = sortrows(lower (tmpKeys));
fullInd(from:to) = ind(ind2);
ii = ii + n;

else
ii = i1 + 1;

end

end

% Final (re)sorting

so = so(fulllInd);

eo = eo(fullInd);

keysIn = keysIn(fulllInd,:);

keysExist = keysExist (fulllInd);
secsExist = secsExist (fulllInd);
subSecsExist = subSecsExist (fulllInd);
readValues = readValues (fulllInd):;
values = keysIn(:,4);

% Refined data - datain

datain = [];

165

for ii=l:nKeys % go through all the keys, existing and non-
existing ones
if ii==
from = 1; % from byte-offset of original data (dataout)
else
from = eo(ii-1);

if keysExist (ii-1)
from = from + 1;
end
end
to = min(so(ii)-1,fs); % to byte-offset of original data
(dataout)

if ~isempty(dataout)
datain = [datain dataout (from:to)]; % the lines before
the key
end

if length(datain) & (~(datain (end)==RETURN |
datain (end)==NEWLINE))
datain = [datain, sprintf (NL CHAR)];
end

tab = [];
if ~keysExist (ii)
if ~secsExist(ii) && ~isempty(keysIn(ii, 1))
if ~isempty(keysIn{ii,1})
datain = [datain sprintf(['%s' NL CHAR], ['['
keysIn{ii,1} "]'1)1;
end
% Key-indices with the same section as this, ii-th key
(even empty sections are considered)
ind = find(strcmpi(keysIn(:,1), keysIn(ii,1)));
% This section exists at all keys corresponding to the
same section from know on (even the empty ones)
secsExist (ind) = 1;
end
if ~subSecsExist(ii) && ~isempty(keysIn(ii,?2))
if ~isempty(keysIn{ii,2})
if secsExist(ii); tab = tabl; end;
datain = [datain sprintf(['%s' NL CHAR], [tab '({'
keysIn{ii,2} '}'])1;
end
% Key-indices with the same section AND subsection as
this, ii-th key
% (even empty sections and subsections are considered)
ind = find(strcmpi(keysIn(:,1), keysIn(ii,1l)) &
strcmpi (keysIn(:,2), keysIn(ii,2)));
% This subsection exists at all keys corresponding to
the
% same section and subsection from know on (even the
empty ones)
subSecsExist (ind) = 1;

end
end

if secsExist(ii) & (~isempty(keysIn{ii,1}));

tab

166

tabl; end;

if subSecsExist (ii) & (~isempty(keysIn{ii,2})); tab = [tab
tabl]; end;
datain = [datain sprintf(['%s' NL CHAR], [tab keysIn{ii,3} ' ="
values{ii}])];
end
from = eo(ii);

if keysExist (ii)

from = from + 1;
end
to = length (dataout);
if from < to

datain = [datain dataout (from:to)];
end
fwrite (fh,datain, 'char');
catch

fclose(fh);

error (['Error writing keys to file:

end
fclose (fh);

%

function deletekeys (fileName, keys)

fileName

lasterr]);

% Deletes keys and their values out; keys must have at least 3 columns:

% section, subsection, and the key

[m,n] = size(keys);
if n < 3

error ('Keys to be deleted are given in an invalid format.');
end

o)

% Get keys position first
keysIn = keys;

[secsExist, subSecsExist, keysExist, readValues, so,e0]

findkeys (fileName, keys(:,1:3));

% Read the whole file's contents out
fh = fopen(fileName, 'r');

if fh == -1
error(['File: '"'' fileName ''' does not exist or can not be
opened.']);
end
try
dataout = fread(fh, 'char=>char')"';
catch

fclose (fh);
rethrow (lasterror);
end

167

fclose (fh);

%--- Rewriting the file -> writing the refined content
tfh = fopen(fileName, 'w');
if fh == -1
error(['File: '"'' fileName ''' does not exist or can not be
opened.']);
end
try

ind = find(keysExist);
nExistingKeys = length(ind) ;
datain = dataout;

if nExistingKeys
% Filtering - retain only the existing keys...

fs = length(dataout) ; % file size in bytes

so = so(ind);

eo eo (ind) ;

keysIn = keysIn(ind, :);

% ...and sorting

[so,1ind] = sort(so);

eo = eo(ind);

keysIn = keysIn(ind, :);

% Refined data - datain
datain = [];

[

for ii=1:nExistingKeys % go through all the existing keys

if ii==
from = 1; % from byte-offset of original data
(dataout)
else
from = eo(ii-1)+1;
end
to = so(ii)-1; % to byte-offset of original data (dataout)

if ~isempty(dataout)
datain = [datain dataout (from:to)]; % the lines
before the key

end
end
from = eo(ii)+1;
to = length (dataout);
if from < to

datain = [datain dataout (from:to)];
end

end

fwrite (fh,datain, 'char');

catch
fclose (fh);
error (['Error deleting keys from file: '"'' fileName '"'' : '

lasterr]);

168

function [keys,sections,subsections] = readallkeys (fileName)

o)

% Reads all the keys out as well as the sections and subsections

keys = [];
sections = [];
subsections = [];
% Read the whole file's contents out
try
dataout = textread(fileName, '$s', 'delimiter', '\n');
catch
error(['File: '"'' fileName ''' does not exist or can not be
opened.']);
end
nLines = size(dataout,1l);

[

% Go through all the lines and construct the keys variable

keys = cell (nLines, 4);

sections = cell (nLines,1);

subsections = cell (nLines, 2);

keyN = 0;

secN = 0;

subsecN = 0;

secStr = '';

subsecStr = '';

for ii=l:nLines
[status,value,key] = processiniline(dataout{ii});
if status == 1

secN = secN + 1;

secStr = value;

sections (secN) = {secStr};
elseif status ==

subsecN = subsecN + 1;

subsecStr = value;

subsections (subsecN, :) = {secStr,subsecStr};
elseif status ==

keyN = keyN + 1;

keys (keyN, :) = {secStr,subsecStr, key,value};
end
end
keys (keyN+l:end,:) = [];
sections (secN+l:end,:) = [];

subsections (subsecN+l:end, :) = [];

169

function [status,value,key] = processiniline(line)
Processes a line read from the ini file and
returns the following values:

o\

o\

% - status: -1 => unknown string found

% 0 => empty line found

% 1 => section found

% 2 => subsection found

% 3 => key-value pair found

% 4 => comment line found (starting with ;)

% - value: value-string of a key, section, subsection, comment, or
unknown string

% - key: key as string

status = 0;

value = [];
key = [1;
line = strim(line); % removes any leading and
trailing spaces
if isempty(line) $ empty line
return
end
if strcmpi(line(1l),';") % comment found
status = 4;
value = line(2:end);
elseif (line(l) == '"['") & (line(end) == ']') & (length(line) >= 3) %
section found
value = lower (line(2:end-1));
status = 1;
elseif (line(l) == '{') &... % subsection found
(line(end) == '}') & (length(line) >= 3)
value = lower (line (2:end-1));
status = 2;
else % either key-value pair or
unknown string
pos = findstr(line, '="');
if ~isempty (pos) % key-value pair found
status = 3;
key = lower (line(l:pos-1));
value = line(pos+l:end);

oe

key = strim(key); removes any leading and
trailing spaces

value = strim(value);
trailing spaces

if isempty (key)

o\°

removes any leading and

oe

empty keys are not

allowed
status = 0;
key = [1;
value = [];
end
else % unknown string found
status = -1;

value = line;

end
end

o3
o

function outstr = strim(str)

o

% from the str string.
if isnumeric(str);

outstr = str;
return
end
ind = find(~isspace(str)); % indices of the non-space

characters in the str
if isempty (ind)

outstr = [];
else
outstr = str(ind(l) :ind(end));
end
function cs = cellstrings (m,n)
% Creates a m x n cell array of empty strings - "'
cs = cell(m,n);
cs(:) = {'""};

o

function y = n2s(x)
Converts numeric matrix to string representation.

oe

% Example: x given as [l 2;3 4] returns y = '1,2;3;4"
if ischar(x) | isempty(x)
y = X;
return
end
[m,n] = size(x);
y = [num2str(x(1l,:),'%$15.69")1;
for ii=2:m
y = [y '";'" num2str(x(ii,:),'%15.69")1;

end

Removes leading and trailing spaces (spaces, tabs, endlines, ..

)

170

GazePointApi:

o

Gazepoint Function
Made by TRevor Craig
Started 5/17/2016 at 1:08 PM
% This function handles the data from the gazepoint

o° oo

function [TrueX,TrueY]=GazePointApi (Calibration,TotalBlinktime)

%% Setting up the socket

delay=15;

counter=1;

% Blinkcouter=1;%How long the blink counts for

% TotalBlinktime=8; %This should be adjust for blink length beyond
unintentail

% Calibration=2;

ip = '127.0.0.1";

171

portnum = 4242; %This may need to be adjusted based on what the current

setting is

InputBufferSize=4096;

obj.ip address=ip;

obj.port number = portnum;

obj.client socket = tcpip(obj.ip address, obj.port number);

set (obj.client socket, 'InputBufferSize', InputBufferSize);
obj.client socket.Terminator = 'CR/LF';

gazepoint info = strcat('Connected to:', obj.ip address, ' on port:',
num2str (obj.port number), '\n');

%% Open the socket
fopen(obj.client socket);% This opens the camera connection
fprintf (gazepoint info);

%% Calibaration

if Calibration==

fprintf (obj.client socket, '<SET ID="CALIBRATE SHOW" STATE="1"
/>');
fprintf (obj.client socket, '<SET ID="CALIBRATE START" STATE="1"
/>1) - B
pause (delay) ;

fprintf (obj.client socket, '<SET ID="CALIBRATE SHOW" STATE="0"

/>')I

fprintf(obj.Client_socket, '<SET ID="CALIBRATE START" STATE="0"
/>");

fprintf (obj.client socket, '<GET ID="CALIBRATE RESULT SUMMARY"
/>");

fprintf(obj.Client_socket, '<SET ID="ENABLE78END7DATA" STATE="0"
/>
while (get (obj.client socket, 'BytesAvailable') > 0)
results = fscanf (obj.client socket);
%$Sample of returns <CAL ID:"CALIB_START_PT" pT="5"
CALX="0.1500" CALY="0.1500" />

172

CALIXNum = strfind(results, 'CALX="'");
CALIYNum = strfind(results, 'CALY="");
if ((~isempty (CALIXNum)) && (~isempty (CALIYNum)))

Calix (counter)=str2double (results ((CALIXNum+6) : (CALIXNum+5+6))) ;

Caliy(counter)=str2double (results ((CALIYNum+6) : (CALIYNum+5+6)));
counter=counter+1;
end
pause (.01);
end
fprintf(obj.client_socket, '<SET ID="ENABLE SEND DATA" STATE="1"
/>");
fclose (obj.client socket); %This closes the port
end

%% POG Data Extraction

if (Calibration==2)

POGV=1;

fprintf(obj.client_socket, '<SET ID="ENABLE SEND DATA" STATE="0"

/>

fprintf (obj.client socket, '<SET ID="ENABLE SEND DATA" STATE="1"

/>1); a a a
counter=1;

fprintf(obj.client_socket, '<SET ID="ENABLE SEND POG FIX" STATE="1"

/>");
pause (1) ;%This pause is needed to send all the commands

while (get (obj.client socket, 'BytesAvailable') > 0)
data = fscanf (obj.client socket);
POGXNum = strfind(data, 'FPOGX="")
POGYNum = strfind(data, 'FPOGY="")
POGVNUM strfind(data, 'FPOGV="")

if ((~isempty (POGXNum)) && (~isempty

(
(

’

’

(POGYNum))) ;
(POGXNum+7) : (POGXNum+7+6))) ;
(POGYNum+7) : (POGYNum+7+6))) ;

POGx (counter)=str2double (data
POGy (counter)=str2double (data
counter=counter+l;
end
if (~isempty (POGVNUM))
POGV=1int32 (str2double (data (POGVNUM+7))) ;
end
pause (0.01) ;
if POGV==
Blinkcouter=1;
end
if POGV==
Blinkcouter=Blinkcouter+1;
end
if Blinkcouter>=TotalBlinktime
%$This line is what makes it last forever so put theis in
the whileloop to stop it
fprintf(obj.Client_socket, '<SET ID="ENABLE SEND DATA"
STATE="0"/>");%This line is what makes it last forever so put theis in
the whileloop to stop it

/>")

end

end

break;
end
end

fprintf (obj.client socket, '<SET ID="ENABLE SEND DATA" STATE="1"

disp ('PROGRAM STOPPED') ;
%% Closes the Connection and then free everything UP!
fclose (obj.client socket); %This closes the port

%% Display the results
% screensize=[1400,900];
screensize=[700,4507];
$ fillmatrix=zeros (screensize (2),screensize(l));
counter=1;
for i=1:numel (POGx
x=1int32 (POGx (i) *screensize (1)) ;
y=int32 (POGy (1) *screensize (2));
1if((x>0) && (y>0))
if ((x<screensize(l))&&(y<screensize(2)))
TrueX (counter)=x;
TrueY (counter) =y;
counter=counter+1;
fillmatrix(y,x)=255;

i)
i)

o

end
end
end
fillmatrix=zeros (450,700) ;
for i=1:numel (TrueX) ;
fillmatrix (TrueY (i), TrueX (i))=255;

o o oe

oe

end
imshow (fillmatrix) ;

o\°

173

174

FindtheCenter.m:

o

% This is a function used to find the center of an enclosed object
%Made by TRevor Craig
%Started 4/27/2016 at 3:37 pm

function [position]=FindtheCenter (x1,yl,option)
if option==
%% Mean Technique
% Mean Method
centerx=mean (x1) ;
centery=mean (yl);
position=int32 ([centerx,centery]);
end
%% Filled Centroid Option
if option==
FilledImg=zeros ((max(x1l)-(min(x1l))), (max(yl)-min(yl)));
ConnectPoints=zeros (2* (numel (x1)+1),1);
for k=1:numel (x1)
FilledImg (int32(yl(k)),int32(x1(k)))=255;%This can probably be
removed
ConnectPoints (((2*k)-1))=1int32 (x1 (k));
ConnectPoints (2*k)=int32 (y1l (k));
end
k=k+1;
ConnectPoints (((2*k)-1))=1int32(x1 (1)) ;
ConnectPoints (2*k)=1int32 (y1 (1)),
ConnectPoints=transpose (ConnectPoints) ;
shape='Line';
LineWidth=1;
color='red';
ConnectedImage=insertShape (FilledImg, shape,ConnectPoints, 'color',
color, 'LineWidth', LineWidth) ;
ConnectedImage=im2double (im2bw (ConnectedImage, .1)) ;
FilledImg=ConnectedImage;
FilledImg=imfill (FilledImg, 'holes');
% Centroid Method
s = regionprops (FilledImg, 'centroid');
centroids = cat(l, s.Centroid);
centerx=int32 (centroids (1)) ;
centery=int32 (centroids (2)) ;
position=int32 ([centerx,centeryl);
end

175

DataFilter.m:

o

My own Data filter program.

%Made by TRevor Craig

%Started 5/17/2016 at 2:04 PM

% This function filters out messy data

function [truefX,truefY]=DataFilter (x1l,yl,position,PercentAvg)
stdx=std (double (x1)) ;

stdy=std (double(yl));
NumtoAverage=int32 ((numel (x1) /PercentAvqg)) ;

count=1;
for i=1:numel (x1)
if (((abs(x1(i)-position(l)))<=(1.5)*stdx)&&((abs(yl(i)-

position(2)))<=(1.5) *stdy))
tfX (count)=x1(1i);
tfY (count) =yl (1i);
count=count+1;
end
end

for i=l:numel (tfX)-NumtoAverage
truefX (i)=int32 ((sum(tfX (i:i+NumtoAverage))) /NumtoAverage) ;
truefY (i)=int32 ((sum(tfY (i:i+NumtoAverage))) /NumtoAverage) ;
end
end

176

ShapeRecognFnc.m:

o\

Shape Recognizition Function

This is based all off Shape Recogn

This will open an image and see if a program can detect the shape
Made by TRevor Craig
%Started 5/26/2016 at 11:15 am

o° oo

o\°

function [shape,Value]=ShapeRecognFnc (x1l,yl,position)

%% The opener
filename='Images\Imagel.JPG';
inifilename='config\Settings.ini';
inputimage=imread (filename) ;
imsize=size (inputimage) ;

% %% Importing data if Reading from tables
1
strcmp ('ON', char (strrep(inifile(inifilename, 'read', {'DataTableRead"', 'ON
OFFI,lDataI,II,IERRI}),IIII,II)))

o

oe

[,

TestNUM=cell2mat (inifile(inifilename, 'read', { 'DataTableRead', 'CurrentTe
st', '"TESTNUM', 'd', 'ERR'})) ;

% if

strcmp ('ON', char (strrep(inifile(inifilename, 'read', { 'DataTableRead"', 'MA
SSTESER', 'Tester', "', '"ERR"}),"""","")))

%

TestNUM=cell2mat (inifile(inifilename, 'read', {'DataTableRead', '"MASSTESER
', 'mintest','d', '"ERR'}));
mintest=TestNUM;

oe

o

maxtest=cell2mat (inifile(inifilename, 'read', {'DataTableRead', 'MASSTESER

', 'maxtest','d', '"ERR'}));
NSPSE=zeros (maxtest-mintest+1, 3);
NPercentages=zeros (maxtest-mintest+1l, 3);
NCorners=zeros (maxtest-mintest+1,4);
Nmedval=zeros (maxtest-mintest+1,1);
NAreanormscale=zeros (maxtest-mintest+1, 3) ;
NFUl1lNormMeanDiff=zeros (maxtest-mintest+1, 3);
NTotalSlopes=zeros (maxtest-mintest+1l,3);
WildCorners=zeros (maxtest-mintest+1, 3);

end

end

% Giant FOR LOOP FOR MASS TESTING

currentTest=1;

A° 0° 0@ 0° O° d° O A° o° oP° o°

oe

oo

%% Eye Based Test

o\
[
Hh

strcmp ('ON', char (strrep(inifile(inifilename, 'read', {'GazePointAPI"', 'Use
EyeGaze', 'Data','',"ERR"}),"""',"")))

177

o

Calibration=cell2mat (inifile(inifilename, 'read', {'GazePointAPI', 'Calibr
ation', 'Calibrate', 'd','ERR'})); %Set Calibration to 1 for test

%

TotalBlinktime=cell2mat (inifile(inifilename, 'read', {'GazePointAPI"', 'Cal
ibration', 'TotalBlinktime', 'd', 'ERR'})) ; $Reccomended setting is to be 8

% [tx1,tyl]=GazePointApi (Calibration, TotalBlinktime) ;
% [position]=FindtheCenter (txl,tyl,2); %Multiple options for What

center technique is used
Q

o°

NumAvG=cell2mat (inifile(inifilename, 'read', {'DataFilter', '"NumbertoAvg',
'Number', 'd', '"ERR'})) ;

% [x1,yl]=DataFilter(txl,tyl,position, NumAvG); %Standarddeviation
filter with average sum

o

oe

end

o

for TestNUM=mintest:maxtest

FillMatrix=zeros (imsize (1), imsize (2));
%% The gaze selected object with a click in this case
if

trcmp ('OFF', char (strrep(inifile(inifilename, 'read', {'DataTableRead', 'O
OFF','Data',",'ERR'}),"",")))

figure;

imshow (inputimage) ;

if
strcmp ('OFF', char (strrep(inifile(inifilename, 'read', {'GazePointAPI"', 'Us
eEyeGaze', 'Data', "', 'ERR'"}), """, "")))
% [x,y,button] = ginput(1l);
% position=[x,vy];
% end
% color='"red';
% end
% if
strcmp ('ON', char (strrep(inifile(inifilename, 'read', {'DataTableRead"', 'ON
OFF','Data',",'ERR'}),"",")))
% figure;
% imshow (inputimage) ;

oe

o° o0 o0 = W

% [position,xl,yl]=TrialTableRead (TestNUM) ;
% x=position (1) ;

% y=position(2);

% color="'red';

% end

sizes=cell2mat (inifile(inifilename, 'read', {'ShapeRecogn', 'Augmented
Shape', '"Markersize','d','ERR'}));

oo

%% Marking the selected object

if
strcmp ('ON', char (strrep(inifile(inifilename, 'read', { 'ShapeRecogn', 'Augm
ented Shape', 'Marker','','ERR'}),""""',"")));

color='red';

178

MarkedImage = insertMarker (inputimage,position, 'color', color,
'size',sizes);
% imshow (MarkedImage) ;

LineWidth=cell2mat (inifile(inifilename, 'read', {'ShapeRecogn', 'Augmented
Shape', 'LineWidth', 'd', '"ERR'}));
else
MarkedImage=inputimage;
end

%% Adding shapes to the image to see better(circle first)

[
)

strcmp ('ON', char (strrep(inifile(inifilename, 'read’', { 'ShapeRecogn', 'Augm
ented Shape', 'Circle','','"ERR'}), """ ", "")));

LineWidth=cell2mat (inifile(inifilename, 'read', {'ShapeRecogn', "Augmented
Shape', 'LineWidth', 'd', "ERR'})) ;
shape='circle';

radius=cell2mat (inifile(inifilename, 'read’', {'ShapeRecogn', "Augmented
Shape', 'radius','d', "ERR'}));
cposition=[position, radius];
ShapedImage=insertShape (MarkedImage, shape, cposition, 'color',
color, 'LineWidth', LineWidth) ;
% imshow (ShapedImage) ;
else

ShapedImage=MarkedImage;

radius=cell2mat (inifile(inifilename, 'read', {'ShapeRecogn', 'Augmented
Shape', 'radius','d', '"'ERR'}));
%Note the radius is also the minimum value that you can draw
the shape
%$so be sure to make a radius that is appropriate for the image
end

%% Adding shapes to the image to see better (square second)

[
H

strcmp ('ON', char (strrep(inifile(inifilename, 'read’', { 'ShapeRecogn', 'Augm
ented Shape', 'Square','','ERR"}), """, "")));
shape='Rectangle';

radius=cell2mat (inifile(inifilename, 'read', {'ShapeRecogn', "Augmented
Shape', 'radius','d', 'ERR'}));

LineWidth=cell2mat (inifile(inifilename, 'read', {'ShapeRecogn', "'Augmented
Shape', 'LineWidth', 'd', '"ERR'})) ;

width=2*radius;

height=width;

sposition=[(position(1l)-width/2), (position(2) -
width/2),width,height];

ShapedImage=insertShape (ShapedImage, shape, sposition, 'color',
color, 'LineWidth', LineWidth) ;

Q

% imshow (ShapedImage) ;

179
end

%% Adding shapes to the image to see better(triangle third)

[
Hh

strcmp ('ON', char (strrep(inifile(inifilename, 'read', { 'ShapeRecogn', 'Augm
ented Shape', 'Triangle', "', "ERR"}),""'"","")));
shape='Line';

radius=cell2mat (inifile(inifilename, 'read’', { 'ShapeRecogn', 'Augmented
Shape', 'radius', 'd', '"ERR'})) ;

LineWidth=cellZ2mat (inifile(inifilename, 'read', {'ShapeRecogn', "Augmented
Shape', 'LineWidth', 'd', "ERR"'})) ;

Pointl=[(position(l)), (position(2)-radius)];

Point2=[(position(1l) -

int32 (radius* (cos (degtorad(30.0))))), (position(2)+int32 (radius*sin (degt
orad(30))))1;

Point3=[(position(l)+int32 (radius* (cos (degtorad(30.0))))), (position(2)+
int32 (radius*sin (degtorad(30))))1;

triangleposition=[Pointl, Point2, Point3, Pointl];

ShapedImage=insertShape (ShapedImage, shape, triangleposition, 'color',
color, 'LineWidth', LineWidth) ;

% imshow (ShapedImage) ;
end

oe

% Tracking Mouse Around Screen
Directions.

Left click to start tracking
Right click to end tracking

o° oo

oe

% if

strcmp ('OFF', char (strrep(inifile(inifilename, 'read', { 'DataTableRead', 'O
NOFF','Data',",'ERR'}),"",")))

% if

strcmp ('OFF', char(strrep(inifile(inifilename, 'read', { 'GazePointAPI"', 'Us
eEyeGaze', 'Data', "', 'ERR'}), """, "")))

[hand, x1,yl]=freehanddraw() ;
end

o° oo

o\

end

%% Draw the values on our picture.
for i=l:numel (x1)
FillMatrix (int32(yl(i)),int32(x1(i)))=255;
end
figure;
WithMark=insertMarker (FillMatrix,position, 'color', color,
'size',sizes);
% imshow (WithMark); % Added this to see better if the shape was in
the correct spot
%% finding the max and min values for the shape scanner to stop
bounds=16;

oe

oe

180

distances=[abs (position(1l)-max(x1)),abs (position (1) -
min(x1l)),abs (position(2) -max(yl)),abs (position(2)-min(yl))];
stoppingpoint=int32 ((max (distances)) / (bounds)) ;

[CircleResutls, SquareResults, TriangleResults]=ShapeScanner (position, rad
ius,bounds,FillMatrix, stoppingpoint) ;

%% Finding the percentages for each point
[PercentCircle,Cradius]=max (CircleResutls (l:stoppingpoint,2));
Cradius=CircleResutls (Cradius, 1) ;

[PercentSquare, Sradius]=max (SquareResults (l:stoppingpoint,2));
Sradius=SquareResults (Sradius,1);
[PercentTriangle, Tradius]=max (TriangleResults (l:stoppingpoint,2));
Tradius=TriangleResults (Tradius,1);
PercentCircle=PercentCircle/numel (x1) ;
PercentSquare=PercentSquare/numel (x1) ;
PercentTriangle=PercentTriangle/numel (x1) ;
Percentages=[PercentCircle, PercentSquare, PercentTriangle];

%Cool to see each percentage

if
strcmp ('ON', char (strrep(inifile(inifilename, 'read', {'ShapeRecogn', 'Disp
Results', 'Percentages','','ERR"}),"""","")));

disp (Percentages) ;

end

%$To Make a results file

if
strcmp ('ON',char (strrep(inifile(inifilename, 'read', { 'ShapeRecogn', 'Crea
te Results File', '"ResultsFile','',"ERR"}),"""","")));

ResultsfileName='Results\Results.ini';
inifile (ResultsfileName, 'new');
ResultsTitle='ShapeRecogn Results';

CwriteKeys={ResultsTitle, 'Percentages', 'Circle',Percentages(l), 'plain'}

’

SwriteKeys={ResultsTitle, 'Percentages', 'Square', Percentages(2), 'plain'}

’

TwriteKeys={ResultsTitle, 'Percentages', 'Triangles',Percentages(3), 'plai
n'};
inifile (ResultsfileName, 'write',CwriteKeys);
inifile(ResultsfileName, 'write',SwriteKeys);
inifile(ResultsfileName, 'write',TwriteKeys);
end

%% Corner Detection

[NumofCorners, SuccessCircleCorner, SuccessSquareCorner, SuccessTriangleCo
rner]=CornerDetection (position,bounds,x1,yl,FillMatrix,Cradius, Sradius,
Tradius) ;

181

if
strcmp ('ON', char (strrep(inifile(inifilename, 'read', {'ShapeRecogn', 'Disp
Results', "NUMOFCORNERS', "', "ERR"'}),""""',"")));

disp ([SuccessCircleCorner, SuccessSquareCorner, SuccessTriangleCorner]) ;

end

if
strcmp ('ON', char (strrep(inifile(inifilename, 'read', {'ShapeRecogn', 'Crea
te Results File', 'ResultsFile',"'',"ERR'}),"""',"")));

CwriteKeys={ResultsTitle, "Corner', 'Circle',SuccessCircleCorner, 'plain'}

’

SwriteKeys={ResultsTitle, 'Corner', 'Square', SuccessSquareCorner, 'plain'}

’

TwriteKeys={ResultsTitle, "Corner', 'Triangles', SuccessTriangleCorner, 'pl
ain'};
inifile (ResultsfileName, 'write',CwriteKeys) ;
inifile(ResultsfileName, 'write',SwriteKeys);
inifile(ResultsfileName, 'write', TwriteKeys) ;
end

%% This is all the Shape detect code.

[Cscale, Sscale, Tscale,medval, Areanormscale, FUllNormMeanDiff, TotalSlopes
]=ShapeDetect (x1,yl,FillMatrix,Cradius, Sradius, Tradius,position);

%% This code sumarizes all of the other programs and uses "fuzzy
logic" to decide which choice to do.

%$This mode is very accurate over all so want it to be

$powerful. THis may need to be adjusted to account for the values
in the

%other function.

Scaler=cell2mat (inifile(inifilename, 'read', { 'ShapeRecogn', 'Weighted
Percentage', 'Scalar','d',"ERR'}));

SPSE=[Scaler*Percentages(l), Scaler*Percentages (2), Scaler*Percentages (3)

1;

%This process is to place the corner results into weights.
currentTest=1;

if
SuccessCircleCorner>=cell2mat (inifile(inifilename, 'read', { 'Corner
Detection', 'SPSE WEIGHTS', 'LOWCIRCLE','d', 'ERR'}))
if
SuccessCircleCorner>=cell2mat (inifile(inifilename, 'read', { 'Corner
Detection', 'SPSE WEIGHTS', "HIGHCIRCLE','d', "ERR'}))

182

SPSE (1)=SPSE (1) +cell2mat (inifile(inifilename, 'read', {'Corner
Detection', 'SPSE WEIGHTS', "HWEIGHT', 'd', "ERR'}));

WildCorners (currentTest,l)=cell2mat (inifile(inifilename, 'read', {'Corner
Detection', 'SPSE WEIGHTS', '"HWEIGHT','d', '"ERR'}))
else

SPSE (1)=SPSE (1) +cell2mat (inifile(inifilename, 'read', {'Corner
Detection', 'SPSE WEIGHTS', 'LWEIGHT','d', '"ERR'}));

WildCorners (currentTest,l)=cell2mat (inifile(inifilename, 'read', {'Corner
Detection', 'SPSE WEIGHTS', 'LWEIGHT','d', 'ERR'}));
end
end

if
SuccessSquareCorner>=cell2mat (inifile(inifilename, 'read', {'Corner
Detection', 'SPSE WEIGHTS', 'LOWSQUARE', 'd', 'ERR'}))
if
SuccessSquareCorner>=cell2mat (inifile(inifilename, 'read', {'Corner
Detection', 'SPSE WEIGHTS', 'HIGHSQUARE','d', 'ERR'}))

SPSE (2) =SPSE (2) +cell2mat (inifile(inifilename, 'read’', { 'Corner
Detection', 'SPSE WEIGHTS', "HWEIGHT', 'd', '"ERR"'}));

WildCorners (currentTest, 2)=cell2mat (inifile(inifilename, 'read', {'Corner
Detection', 'SPSE WEIGHTS', "HWEIGHT', 'd', '"ERR"'}));
else

SPSE (2)=SPSE (2) +cell2mat (inifile(inifilename, 'read', {'Corner
Detection', 'SPSE WEIGHTS', 'LWEIGHT','d', 'ERR'}));

WildCorners (currentTest, 2)=cell2mat (inifile(inifilename, 'read', {'Corner
Detection', 'SPSE WEIGHTS', 'LWEIGHT','d', 'ERR'}));
end
end

if
SuccessTriangleCorner>=cell2mat (inifile(inifilename, 'read’', {'Corner
Detection', 'SPSE WEIGHTS', 'LOWTRIANGLE', 'd', '"ERR'}))
if
SuccessTriangleCorner>=cellZ2mat (inifile(inifilename, 'read', { 'Corner
Detection', 'SPSE WEIGHTS', 'HIGHTRIANGLE', 'd', 'ERR'}))

SPSE (3)=SPSE (3) +cell2mat (inifile(inifilename, 'read’', { 'Corner
Detection', 'SPSE WEIGHTS', "HWEIGHT', 'd', "ERR"'}));

WildCorners (currentTest, 3)=cell2mat (inifile(inifilename, 'read', {'Corner
Detection', 'SPSE WEIGHTS', 'HWEIGHT','d', 'ERR'}));
else

SPSE (3)=SPSE (3) +tcell2mat (inifile(inifilename, 'read', {'Corner
Detection', 'SPSE WEIGHTS', 'LWEIGHT','d', 'ERR'}));

WildCorners (currentTest, 3)=cell2mat (inifile (inifilename,
Detection', 'SPSE WEIGHTS', 'LWEIGHT','d','ERR'}));
end
end

%The shape algorith results in SPSE format
SPSE (1)=SPSE (1) +Cscale;
SPSE (2) =SPSE (2) +Sscale;
SPSE (3) =SPSE (3) +Tscale;

183

'read', {'Corner

if
strcmp ('ON', char (strrep(inifile(inifilename, 'read', {'ShapeRecogn', 'Disp
Results','SPSE', "', "ERR"}),""'""',"")));
disp (SPSE) ;
end
if

strcmp ('ON', char (strrep(inifile(inifilename, 'read', {'ShapeRecogn', 'Crea

te Results File', 'ResultsFile','',"ERR'}),"""',"")));

writeKeys={ResultsTitle, 'SPSE', 'ALL THE RESULTS',SPSE, 'plain'};

inifile(ResultsfileName, 'write',writeKeys);
end

[Value, Index] = max (SPSE);

if Value<9 $This might need to be adjusted
disp ('No shape found');

end

if Value>=9

if Index==
shape='Circle';

end

if Index==
shape='Square';

end

if Index==
shape='Triangle';

end

disp(['Shape was found to be a ',shape, ' with
', num2str (Value),' SPSE']);
end

end

184

ShapeScanner.m:

function
[CircleResutls, SquareResults, TriangleResults]=ShapeScanner (position, rad
ius,bounds,FillMatrix, stoppingpoint)
imsize=size (FillMatrix) ;
CircleResutls=zeros (stoppingpoint,2);
SquareResults=CircleResutls;
TriangleResults=CircleResutls;
for i=l:stoppingpoint

[HighBounds, LowBounds, DrawnShapeMOD]=FilterMaker ('circle',position,radi
us+ (bounds*i-bounds),FillMatrix, bounds) ;

SuccesfulPointsl=SuccessFilter (imsize, HighBounds, LowBounds, DrawnShapeMO
D)

CircleResutls (i, 1:2)=[radius+ (bounds*i-
bounds) , SuccesfulPointsl];

[HighBounds2, LowBounds2, DrawnShapeMOD2]=FilterMaker ('Rectangle’',positio
n, radius+ (bounds*i-bounds), FillMatrix,bounds) ;

SuccesfulPoints2=SuccessFilter (imsize, HighBounds2, LowBounds2, DrawnShape
MOD2) ;

SquareResults (i, 1l:2)=[radius+ (bounds*i-
bounds) , SuccesfulPoints2];

[HighBounds3, LowBounds3, DrawnShapeMOD3]=FilterMaker ('triangle',position
, radius+ (bounds*i-bounds), FillMatrix, bounds) ;

SuccesfulPoints3=SuccessFilter (imsize, HighBounds3, LowBounds3, DrawnShape
MOD3) ;
TriangleResults (i, 1:2)=[radius+ (bounds*i-
bounds) , SuccesfulPoints3];
end
end

185

CornerDetection.m:

function

[NumofCorners, SuccessCircleCorner, SuccessSquareCorner, SuccessTriangleCo

rner]=CornerDetection (position,bounds,x1,yl,FillMatrix,Cradius, Sradius,

Tradius)

inifilename='config\Settings.ini';

ConnectPoints=zeros (2* (numel (x1)+1),1);

for k=1l:numel (x1)
FillMatrix (int32 (vl (k)),int32 (x1 (k
ConnectPoints (((2*k)-1))=1int32 (x1(
ConnectPoints (2*k)=1int32 (y1l(k));

end

k=k+1;

ConnectPoints (((2*k)-1))=1int32(x1 (1)) ;

ConnectPoints (2*k)=int32 (y1l(1));

)))=255;
k));

ConnectPoints=transpose (ConnectPoints) ;
position=double (position) ;

%% Connect all the points

shape='Line';

LineWidth=1;

color='red';
ConnectedImage=insertShape (FillMatrix, shape,ConnectPoints, 'color',
color, 'LineWidth', LineWidth) ;
ConnectedImage=im2double (im2bw (ConnectedImage, .1)) ;
FillMatrix=ConnectedImage;

%% Corner results
CornerResults=corner (FillMatrix, 'Harris',cell2mat (inifile(inifilename, '
read', {'Corner

Detection', 'Harris', 'MaxCorners','d','ERR'})), 'QualityLevel',cell2mat (i
nifile(inifilename, 'read', {'Corner

Detection', 'Harris', 'QualityLevel', 'd','ERR'})), 'SensitivityFactor',cel
12mat (inifile(inifilename, 'read', {'Corner

Detection', "Harris', 'SensitivityFactor','d','ERR"'}))); %$This should be
twice the amount of corners

o\°

% Find all the corners

%$Deconstruct Square Raidus to Find Corners
SCorners=[position(l)-Sradius,position(2)-Sradius;
position (1) -Sradius,position (2)+Sradius;
position (1) +Sradius,position (2)-Sradius;
position (1) +Sradius,position(2)+Sradius];

—_

%$Deconstruct Triangle Raidus to Find Corners
TCorners=[(position(1l)), (position(2)-Tradius);
(position(1l) -
int32 (Tradius* (cos (degtorad(30.0))))), (position(2)+int32 (Tradius*sin (de
gtorad(30))));

186

(position (1) +int32 (Tradius* (cos (degtorad(30.0))))), (position(2)+int32 (T
radius*sin (degtorad(30))))1;
SuccessCircleCorner=0;
SuccessSquareCorner=0;
SuccessTriangleCorner=0;
NumofCorners=numel (CornerResults(:,1));
for g=1l:NumofCorners
$The circle Part
tempO=sqgrt (((abs (position (1) -
CornerResults(g,1l)))"2)+ (abs(position(2)-CornerResults(g,2))"2));

end
end

tempO=abs (Cradius-tempO) ;

if tempO<bounds
SuccessCircleCorner=SuccessCircleCorner+1l;

end

$The Square part

for z=1:4
templ=abs (CornerResults(g,1l) -SCorners(z,1l));
temp2=abs (CornerResults (g, 2) -SCorners(z,2));
if ((templ<(bounds))&& (temp2<(bounds)))

SuccessSquareCorner=SuccessSquareCorner+l;

end

end

%The Triangle Part

for y=1:3
templ=abs (CornerResults(g,1l) -TCorners(y,1));
temp2=abs (CornerResults (g, 2) -TCorners(y,2));
if ((templ<(bounds)) && (temp2<(bounds)))

SuccessTriangleCorner=SuccessTriangleCorner+1l;

end

end

187

ShapeDetect.m:

function

[CTransfer, STransfer, TTransfer,medval, Areanormscale, FUl1NormMeanDiff, To
talSlopes]=ShapeDetect (x1,yl,FillMatrix,Cradius, Sradius, Tradius,positio
n)

SPSE=[0,0,01;

inifilename='config\Settings.ini';

UseDataSet=char (strrep(inifile(inifilename, 'read', {'ShapeDetect', "Datas
et Options', 'UseDataSet',"'','ERR"}),"""'"'",""));

$% OLD TEST STUFF BUT HELPFUL to make it more stand alone
ConnectPoints=zeros (2* (numel (x1)+1),1);

for k=1:numel (x1)
FillMatrix (int32 (vl (k)),int32 (x1 (k
ConnectPoints (((2*k)-1))=1int32 (x1 (
ConnectPoints (2*k)=1int32 (y1l(k));

end

k=k+1;

ConnectPoints (((2*k)-1))=1int32(x1 (1)) ;

ConnectPoints (2*k)=int32 (y1l(1));

)))=255;
k));

ConnectPoints=transpose (ConnectPoints) ;

%Connect all the points

shape='Line';

LineWidth=1;

color='red';
ConnectedImage=insertShape (FillMatrix, shape,ConnectPoints, 'color',
color, 'LineWidth', LineWidth) ;
ConnectedImage=im2double (im2bw (ConnectedImage, .1)) ;
FillMatrix=ConnectedImage;

[

%% previous test
ImageShape=imfill (FillMatrix, '"holes");

BW = im2bw (ImageShape, .1);

[H,~,~] = hough (BW, 'RhoResolution', 0.5, 'ThetaResolution',0.5);
data=zeros (max (max (H)),1);
for cnt = l:max (max(H))

data(cnt) = sum(sum(H == cnt));

end

medval = median (data);

if (medval>=0) && (medval<l170)
shape="TRIANGLE';

188

SPSE (3)=cell2mat (inifile(inifilename, 'read', { 'ShapeDetect', '"MEDVAL', 'BE
STWEIGHT', 'd', 'ERR'}));

SPSE (2)=cell2mat(inifile(inifilename, 'read', {'ShapeDetect', '"MEDVAL', 'OT
HERWEIGHT','d', 'ERR'}));

SPSE (1)=cell2mat(inifile(inifilename, 'read', {'ShapeDetect', '"MEDVAL', 'OT
HERWEIGHT', 'd', "ERR'}));
end

if (medval>=170) && (medval<680)
shape="CIRCLE";

SPSE (3)=cell2mat (inifile(inifilename, 'read', { 'ShapeDetect', '"MEDVAL', 'OT
HERWEIGHT', 'd', "ERR'}));

SPSE (2)=cell2mat (inifile(inifilename, 'read', { 'ShapeDetect', '"MEDVAL', 'OT
HERWEIGHT','d', 'ERR'}));

SPSE (1)=cell2mat(inifile(inifilename, 'read', { 'ShapeDetect', '"MEDVAL', 'BE
STWEIGHT', 'd', "ERR'}));
end

if (medval>=680)
shape="SQUARE"';

SPSE (3)=cell2mat (inifile(inifilename, 'read', {'ShapeDetect', "MEDVAL', 'OT
HERWEIGHT', 'd', 'ERR'})) ;

SPSE (2)=cell2mat (inifile(inifilename, 'read', {'ShapeDetect', "MEDVAL', 'BE
STWEIGHT', 'd', 'ERR'})) ;

SPSE (1)=cell2mat(inifile(inifilename, 'read', {'ShapeDetect', '"MEDVAL', 'OT
HERWEIGHT', 'd', '"ERR'}));

end

if

strcmp ('ON', char (strrep(inifile(inifilename, 'read', {'ShapeDetect', 'Disp
Results', 'medval', "', '"ERR'"}), """, "")))

disp(['Shape was found to be a ',shape, ' with ',num2str (medval),’
MedValue!']);
end
if
strcmp ('ON', char (strrep(inifile(inifilename, 'read', {'ShapeRecogn', 'Crea
te Results File', 'ResultsFile','','"ERR"}),""'"'","")));

ResultsTitle='ShapeRecogn Results';
ResultsfileName='Results\Results.ini';
WriteKeys={ResultsTitle, '"MEDVAL', "Number',medval, 'plain'};
inifile(ResultsfileName, 'write',WriteKeys)

end

189

%% Try plotting a perfect result and force fitting the result to the
other one
%this is in the hopes of making perfect data to compare the two plots
Swithout guessing.
if strcmp (UseDataSet, 'ON')

[Cdata, Sdata, Tdata]=HoughAssist (Cradius, Sradius, Tradius) ;
end

if strcmp (UseDataSet, 'OFF")
imsize=size (FillMatrix) ;
Cplot=zeros(imsize(l),imsize(2),1);
Splot=zeros (imsize(l),imsize(2),1);
Tplot=zeros(imsize(1l),imsize(2),1);

%Creating Circle First

shape='circle';

cposition=[position,Cradius];

LineWidth=1;

Cplot=insertShape (Cplot, shape,cposition, 'color',
color, 'LineWidth', LineWidth) ;

Cplot = im2bw (Cplot, .1);

Cplot=imfill (Cplot, "holes'");

% Adding shapes to the image (square second)

shape='Rectangle';

width=2*Sradius;

height=width;

sposition=[(position(1l)-width/2), (position(2) -
width/2),width,height];

LineWidth=1;

Splot=insertShape (Splot, shape, sposition, 'color',
color, 'LineWidth', LineWidth) ;

Splot = im2bw (Splot, .1);

Splot=imfill (Splot, 'holes');

% Adding shapes to the image to see better(triangle third)
shape='Line';

Pointl=[(position(l)), (position(2)-Tradius)];

Point2=[(position (1) -
int32 (Tradius* (cos (degtorad (30.0))))), (position(2)+int32 (Tradius*sin (de
gtorad(30))))1;
Point3=[(position(l)+int32 (Tradius* (cos (degtorad(30.0))))), (position(2)
+int32 (Tradius*sin (degtorad (30))))]1;

triangleposition=[Pointl, Point2, Point3, Pointl];

LineWidth=1;

Tplot=insertShape (Tplot, shape, triangleposition, 'color’,
color, 'LineWidth', LineWidth) ;

Tplot = im2bw (Tplot, .1);

Tplot=imfill (Tplot, 'holes');

%$Do all the hough calculations
[CH,~,~] = hough (Cplot, "RhoResolution',0.5, '"ThetaResolution',0.5);

190

[SH,~,~] = hough(Splot, 'RhoResolution',0.5, 'ThetaResolution',0.5);

[TH,~,~] =
for cnt = l:max(max(CH))
Cdata(cnt) = sum(sum(CH
end
for cnt = 1:max (max (SH))
Sdata (cnt) = sum(sum(SH
end
for cnt = l:max(max (TH))
Tdata (cnt) = sum(sum(TH == cnt));
end
end
%% Plotting tools
% plot (data,'.");
% hold on;

o

plot (Tdata, '-"');
pbaspect ([1 .55 11);

A 0° o° o° o° o° o o°

o\°

xlabel ('Hough Matrix Intensity'),
title('Idealized Triangle Shape vs Actual Input');
legend ('User Input', 'Idealized Shape');

line ([Tradius, Tradius],ylim) ;

ootherguess=int32 (Tradius/tan (deg2rad (60))) ;

line ([ootherguess, ocotherguess],ylim);
halfguess=ootherguess+ ((Tradius-ootherguess) /3) ;
line ([halfguess,halfguess],ylim) ;

ylabel ('Counts');

hough (Tplot, 'RhoResolution', 0.5, '"ThetaResolution',0.5);

%$This is done to find the area under the curve and see which one is the

%closest fit for the program.
SampCUM = cumtrapz (data);
SampSUM=SampCUM (numel (data)) ;

CCUM = cumtrapz (Cdata);
CSUM=CCUM (numel (Cdata)) ;

SCUM = cumtrapz (Sdata) ;
SSUM=SCUM (numel (Sdata)) ;

TCUM =cumtrapz (Tdata) ;
TSUM=TCUM (numel (Tdata)) ;

Cdiff=abs (SampSUM-CSUM) ;
Sdiff=abs (SampSUM-SSUM) ;
Tdiff=abs (SampSUM-TSUM) ;
Differnces=[Cdiff,Sdiff,Tdiff];

normDiffernces=Differnces/norm(Differnces) ;

AreaScale=cellZ2mat (inifile(inifilename, 'read', { 'ShapeDetect', 'Differnt

Area', 'Scale','d','ERR'}));

Areanormscale=[AreaScale* (1-normDiffernces(1l)),AreaScale* (1-
normDiffernces (2)),AreaScale* (1-normDiffernces(3))1];

SPSE (1) =SPSE (1) +tAreaScale* (1-normDiffernces (1)) ;

SPSE (2) =SPSE (2) +AreaScale* (1-normDiffernces (2)) ;

191

SPSE (3) =SPSE (3) +AreaScale* (l1-normDiffernces (3)) ;

if
strcmp ('ON', char (strrep(inifile(inifilename, 'read’', { 'ShapeDetect', 'Disp
Results', 'diffarea','','"ERR'"}), """ "', "")))
disp(l-normDiffernces);
end
if
strcmp ('ON', char (strrep(inifile(inifilename, 'read’', {'ShapeRecogn', 'Crea
te Results File', 'ResultsFile','','"ERR'}),"""',"")));

CwriteKeys={ResultsTitle, "'Area Differnces', 'Circle',AreaScale* (1-
normDiffernces (1)), 'plain'};
SwriteKeys={ResultsTitle, 'Area Differnces', 'Square',AreaScale* (1-
normDiffernces(2)), 'plain'};
TwriteKeys={ResultsTitle, "Area
Differnces', 'Triangles',AreaScale* (1-normDiffernces(3)), 'plain'};
inifile (ResultsfileName, 'write',CwriteKeys) ;
inifile(ResultsfileName, 'write',SwriteKeys);
inifile(ResultsfileName, 'write', TwriteKeys) ;
end

%Now to check for the average value and variance from expected for the
first part to see
%1f information there can help.
$how much of the graph to look at?
howfar=cellZ2mat (inifile(inifilename, 'read', {'ShapeDetect', '"MeanValues',
'howfar', 'd', "ERR'}));
SampMEAN=mean (data (1:int32 ((howfar) *numel (data)
CMEAN=mean (Cdata (1:int32 ((howfar) *numel (Cdata)

)

)

)))

)))
SMEAN=mean (Sdata (1:1int32 ((howfar) *numel (Sdata)))) ;
TMEAN=mean (Tdata (1:int32 ((howfar) *numel (Tdata))))

’

MeanDiffernces=[abs (SampMEAN-CMEAN) , abs (SampMEAN-SMEAN) , abs (SampMEAN-
TMEAN)] ;

normMeanDiffernces=MeanDiffernces/norm(MeanDiffernces) ;

Scale=cell2mat (inifile(inifilename, 'read', {'ShapeDetect', '"MeanValues"', "'
Scale','d','ERR'}));

FUllNormMeanDiff=[Scale* (1-normMeanDiffernces (1)), Scale* (1-
normMeanDiffernces (2)),Scale* (1-normMeanDiffernces (3))];

SPSE (1) =SPSE (1) +Scale* (1-normMeanDiffernces (1)) ;

SPSE (2) =SPSE (2) +Scale* (1-normMeanDiffernces (2)) ;

SPSE (3)=SPSE (3) +Scale* (1-normMeanDiffernces (3)) ;

—

if
strcmp ('ON', char (strrep(inifile(inifilename, 'read’', {'ShapeDetect', 'Disp
Results', 'diffmeanvals','','ERR"'}),"""","")))

disp (l-normMeanDiffernces);
end

192

if
strcmp ('ON', char (strrep(inifile(inifilename, 'read', {'ShapeRecogn', 'Crea
te Results File', 'ResultsFile','','ERR"}),"""","")));

CwriteKeys={ResultsTitle, '"Mean Differnces', 'Circle',Scale* (1-
normMeanDiffernces (1)), "plain'};

SwriteKeys={ResultsTitle, 'Mean Differnces', 'Square',Scale* (1-
normMeanDiffernces (2)), '"plain'};

TwriteKeys={ResultsTitle, '"Mean Differnces', 'Triangles', Scale* (1-
normMeanDiffernces (3)), 'plain'};

inifile(ResultsfileName, 'write',CwriteKeys);

inifile (ResultsfileName, 'write', SwriteKeys) ;

inifile (ResultsfileName, 'write', TwriteKeys) ;
end

%$Checking the first few points and the last few points near the slope
line

% Idea 1s to check for a consistent curve. Circle slopes upwards,
square

%is constant. and triangle near constant but higher value.This will
provide

%a sloped value that can be compared to see if values increase this
will

gnot be effective for triangle or square. Also expect that circles may
have

%$lower values as fewer points are as high

% MIGHT want to check if values go up or down for the slope

avgpoints=cell2mat (inifile(inifilename, 'read', {'ShapeDetect', 'Slope', 'a
vgpoints','d', 'ERR'})); %Show many point to average

CircleSlopePoint=Cradius;

SquareSlopePoint=Sradius;
TriangleSlopePoint=int32 ((Tradius/tan (deg2rad(60)))+ ((Tradius-
(Tradius/tan (deg2rad(60))))/3));

dataPl=mean (data (l:avgpoints));

CdataP2=mean (data (CircleSlopePoint-avgpoints:CircleSlopePoint)) ;
SdataP2=mean (data (SquareSlopePoint-avgpoints:SquareSlopePoint)) ;
TdataP2=mean (data (TriangleSlopePoint-avgpoints:TriangleSlopePoint)) ;
slopeC=abs (dataPl-CdataP2);

slopeS=abs (dataPl-SdataP2);

slopeT=abs (dataPl-TdataP2) ;

CdataPl=mean (Cdata (l:avgpoints)) ;
Cslope=abs (CdataPl-CdataP2) ;

SdataPl=mean (Sdata (l:avgpoints));
Sslope=abs (SdataPl-SdataP2) ;

TdataPl=mean (Tdata (l:avgpoints));
Tslope=abs (TdataPl-TdataP2);

193
slopes=[abs (slopeC-Cslope),abs (slopeS-Sslope), abs(slopeT-Tslope)];

normslopes=slopes/norm(slopes);

scale=cell2mat (inifile(inifilename, 'read', {'ShapeDetect', 'Slope', 'scale
', 'd', "ERR'}))

TotalSlopes=[scale* (1-normslopes(l)),scale* (l-normslopes(2)),scale* (1-
normslopes(3))1;

SPSE (1)=SPSE (1) +scale* (1-normslopes(1l));

SPSE (2) =SPSE (2) +scale* (1-normslopes (2)) ;
SPSE (3)=SPSE (3) +scale* (1-normslopes (3));
if
strcmp ('ON', char (strrep(inifile(inifilename, 'read', {'ShapeDetect', 'Disp
Results','diffslopes’', "', "ERR"}),""""',"")))
disp (l-normslopes) ;
end

%% ResultsFile

if

strcmp ('ON', char (strrep(inifile(inifilename, 'read’', {'ShapeRecogn', 'Crea

te Results File', 'ResultsFile','','"ERR'"}),""'""'","")));
CwriteKeys={ResultsTitle, 'Slope', 'Circle',scale* (1-

normslopes(l)), 'plain'};

SwriteKeys={ResultsTitle, 'Slope', 'Square',scale* (1-
normslopes(2)), 'plain'};

TwriteKeys={ResultsTitle, 'Slope', 'Triangles',scale* (1-
normslopes(3)), 'plain'};

inifile (ResultsfileName, 'write',CwriteKeys) ;

inifile (ResultsfileName, 'write', SwriteKeys) ;

inifile (ResultsfileName, 'write', TwriteKeys) ;
end

%% Transfer the data out of the program/function :D
CTransfer=SPSE (1) ;

STransfer=SPSE (2) ;

TTransfer=SPSE (3) ;

end

194

HoughAssist.m:

function [Cdata, Sdata,Tdata]l=HoughAssist (Cradius,Sradius, Tradius)

%$This Helps get the values from the tables.

%$Hugh Table assist. To go in shape detect

Title="'Hough Data';

inifilename='config\Settings.ini';

topradius=cellZ2mat (inifile(inifilename, 'read', { '"HoughAssist', 'Stationar
yvalues', 'topradius', 'd', '"ERR'}));

%$This is the largest number aviable to the user Don't change
splits=cell2mat (inifile(inifilename, 'read', {'HoughAssist', 'Stationaryva
lues', 'splits', 'd', "ERR'}));

numofsplits=1;

basefileName='SmallHoughData\HoughData ';
fileName=strcat (basefileName, num2str (1)) ;
fileName=strcat (fileName, ' ");
fileName=strcat (fileName, num2str (splits*numofsplits));
fileName=strcat (fileName, '.ini'");

if max ([Cradius, Sradius,Tradius])<=topradius
for i=l:max([Cradius, Sradius, Tradius])

if i==Cradius
readKeys = {Title, 'Circle',num2str (Cradius), 'd', "ERR'};
Cdata = cell2mat (inifile(fileName, 'read',readKeys));

end

if i==Sradius
readKeys = {Title, 'Square',num2str (Sradius), 'd', "ERR'};
Sdata = cell2mat(inifile(fileName, 'read', readKeys));

end

if i==Tradius
readKeys = {Title, 'Triangle',num2str (Tradius),'d"', "ERR"};
Tdata = cell2mat (inifile(fileName, 'read’', readKeys));

end

if numofsplits*splits==i
if i~= topradius
numofsplits=numofsplits+1l;
fileName=strcat (basefileName, num2str (i+1)) ;
fileName=strcat (fileName,' ');
fileName=strcat (fileName, num2str (splits*numofsplits));
fileName=strcat (fileName, '.ini'");
end
end
end

end

if max ([Cradius, Sradius,Tradius])>topradius
disp('Data set out of bounds');

end

end

195

DISPLAYXY.m:

o

Display image from x and y
Made by TRevor Craig
Started 5/31/2016 at 10:57 PM
% This functions displays image given X and Y input

o

o

function FilledImg=DISPXY (truefX, truefY)

FilledImg=zeros ((max (truefX)- (min (truefX))), (max (truef¥)-min (truef¥)));
ConnectPoints=zeros (2* (numel (truefX)+1),1);
for k=1:numel (truefX)

FilledImg (int32 (truefY (k)),int32 (truefX(k)))=255;%This can probably
be removed

ConnectPoints (((2*k)-1))=1int32 (truefX (k));

ConnectPoints (2*k)=1int32 (truefY (k)) ;
end
k=k+1;
ConnectPoints (((2*k)-1))=1int32 (truefX (1)) ;
ConnectPoints (2*k)=1int32 (truefY (1)) ;
ConnectPoints=transpose (ConnectPoints) ;
shape='Line';
LineWidth=1;
color='red';
ConnectedImage=insertShape (FilledImg, shape,ConnectPoints, 'color',
color, 'LineWidth', LineWidth) ;
ConnectedImage=im2double (im2bw (ConnectedImage, .1)) ;
FilledImg=ConnectedImage;
FilledImg=imfill (FilledImg, 'holes');
end

ProgramLauncer.m:

% Launch The external Sofware Gazepoint Control

%Made by TRevor Craig

$Started 5/17/2016 at 2:04 PM

% This function launches the program needed to collect eye data.
function ProgramLaunher ()

%This needs to be specfied for eaxh case program path

o)

% fileexe path = which ('Gazepoint.exe')

% system command string = [fileexe path, ' &'];

% status = system (system command string)

system('C:\Program Files (x86)\Gazepoint\Gazepoint\bin64\Gazepoint.
&'

dos ('taskkill /IM cmd.exe');

clc;

end

196

exe

197

SaveToFiles.m:

% Save Results to Fine
%Made by TRevor Craig
%Started 8/2/2016 at 2:33 PM
% This functions gathers and then displays the results.
function SaveToFiles (IDNumber, recordX, record¥Y, SPSE, testNum)
FileDirectory='UserResults\';
Excelfile=strcat(FileDirectory,IDNumber,'\',num2str(SPSE),'_',num2str(t
estNum), '.csv');
FileName=strcat (FileDirectory, IDNumber) ;
A = exist(FileName, 'file');% Return value should Be 7
if A==

mkdir (FileDirectory, IDNumber)
end
littletable=table (transpose (recordX) , transpose (recordY¥));
writetable (littletable,Excelfile, 'WriteVariableNames', false);
end

198

RandomName.m:

%Random Characters String
%Made by TRevor Craig
$Started 10/6/2016 at 1:13 AM

clear all; %Clear the screen for the user

close all; %Closses all the windows

echo off; %Doesn't display code the user doesn't need
clc; %Clears the command window For the User

clear vars; %Cleans up any previous data

%% General Set up
Letter="A':"'2";
Number=0:1:9;
NameLength=10;
Name="";
for i=1:Namelength
Option = randi([1 2],1,1);

if Option==
RandomChar=int2str (Number (randi ([1 10],1,1)));
end
if Option==
RandomChar=char (Letter (randi ([1 26]1,1,1)));
end

Name=strcat (Name, RandomChar) ;
end
disp('Your Name IS:'")
disp (Name) ;

199

RandomTestOrder.m:

%$Random Test Order
%Made by TRevor Craig
%Started 10/6/2016 at 1:30 AM

clear all; %Clear the screen for the user

close all; %Closses all the windows

echo off; %Doesn't display code the user doesn't need
clc; %Clears the command window For the User

clear vars; %Cleans up any previous data

%% Finding Random orders
TestLength=30;
Letter=['C','S','T"'];
CircleCount=0;
SquareCount=0;
TriangleCount=0;
TestOrder="'";
i=0;
while (TestLength~=numel (TestOrder))
RandomChar=char (Letter (randi ([1 3],1,1)));
if RandomChar=='C"';
if CircleCount~=10
TestOrder=strcat (TestOrder, RandomChar) ;
CircleCount=CircleCount+1;
end
end
if RandomChar=='S";
if SquareCount~=10
TestOrder=strcat (TestOrder, RandomChar) ;
SquareCount=SquareCount+1l;
end

end
if RandomChar=='T";
if TriangleCount~=10
TestOrder=strcat (TestOrder, RandomChar) ;
TriangleCount=TriangleCount+1;
end
end
i=i+1;
disp (['Number of Iterations:',int2str(i)]);
end
clc;
disp (['Number of Iterations:',int2str(i)]);
disp ('The order of the test:');
disp (TestOrder) ;

200
APPENDIX 4:
This section has all the code needed for the Raspberry Pi video capture.
Camera Control Program:
Point-and-shoot camera for Raspberry Pi w/camera and Adafruit PiTFT.

This must run as root (sudo python cam.py) due to framebuffer, etc.

#

This can also work with the Model A board and/or the Pi NoIR camera.
Made by Trevor Craig

Adapted from Phil Burgess / Paint Your Dragon for Adafruit Industries.

import atexit
import cPickle as pickle
import errno
import fnmatch
import io

import os
import os.path
import picamera
import pygame
import stat
import threading
import time

import yuv2rgb

import RPi.GPIO as GPIO
from pygame.locals import *
from subprocess import call
import subprocess

import pyfirmata

#Setting up the arduino to do its work

board=pyfirmata.Arduino('/dev/ttyACMOQ')

print "Setting up the connection"

APins=1 #Pin that we are reading

it=pyfirmata.util.lterator(board)
it.start()
Start reporting of pin 1

board.analog[1].enable_reporting()

#Setting up the GPIO Buttons

ExitButton=27
PICBUTTON=17
LowButton=23

HighButton=22

201

202

GPIO.setmode(GPIO.BCM)

GPIO.setup(ExitButton,GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPI0O.setup(PICBUTTON,GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(LowButton,GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(HighButton,GPIO.IN, pull_up_down=GPIO.PUD_UP)

Ul classes

Small resistive touchscreen is best suited to simple tap interactions.
Importing a big widget library seemed a bit overkill. Instead, a couple

of rudimentary classes are sufficient for the Ul elements:

Icon is a very simple bitmap class, just associates a name and a pygame
image (PNG loaded from icons directory) for each.
There isn't a globally-declared fixed list of Icons. Instead, the list

is populated at runtime from the contents of the 'icons' directory.

class Icon:

def _init_ (self, name):
self.name = name
try:

self.bitmap = pygame.image.load(iconPath + '/' + name + '.png')

203

except:

pass

Button is a simple tappable screen region. Each has:

- bounding rect ((X,Y,W,H) in pixels)

- optional background color and/or Icon (or None), always centered
- optional foreground Icon, always centered

- optional single callback function

- optional single value passed to callback

Occasionally Buttons are used as a convenience for positioning lcons
but the taps are ignored. Stacking order is important; when Buttons
overlap, lowest/first Button in list takes precedence when processing
input, and highest/last Button is drawn atop prior Button(s). This is
used, for example, to center an Icon by creating a passive Button the
width of the full screen, but with other buttons left or right that

may take input precedence (e.g. the Effect labels & buttons).

After Icons are loaded at runtime, a pass is made through the global

buttons|] list to assign the Icon objects (from names) to each Button.

class Button:

def _init__ (self, rect, **kwargs):

self.rect =rect # Bounds

self.color = None # Background fill color, if any

self.iconBg = None # Background Icon (atop color fill)
self.iconFg = None # Foreground Icon (atop background)
self.bg = None # Background Icon name
self.fg = None # Foreground Icon name
self.callback = None # Callback function
self.value = None # Value passed to callback
for key, value in kwargs.iteritems():
if key =="color": self.color =value

elif key =='bg' :self.bg =value

elif key =='fg' :self.fg =value
elif key == 'cb' : self.callback = value

elif key == 'value': self.value =value

def selected(self, pos):

x1 = self.rect[0]

y1 = self.rect[1]

x2 = x1 + self.rect[2] - 1

y2 =yl + self.rect[3] - 1

if ((pos[0] >=x1) and (pos[0] <= x2) and
(pos[1] >=y1) and (pos[1] <=y2)):

if self.callback:

if self.value is None: self.callback()
else: self.callback(self.value)

return True

204

205

return False

def draw(self, screen):
if self.color:
screen.fill(self.color, self.rect)
if self.iconBg:
screen.blit(self.iconBg.bitmap,
(self.rect[0]+(self.rect[2]-self.iconBg.bitmap.get_width())/2,
self.rect[1]+(self.rect[3]-self.iconBg.bitmap.get_height())/2))
if self.iconFg:
screen.blit(self.iconFg.bitmap,
(self.rect[0]+(self.rect[2]-self.iconFg.bitmap.get_width())/2,

self.rect[1]+(self.rect[3]-self.iconFg.bitmap.get_height())/2))

def setBg(self, name):
if name is None:
self.iconBg = None
else:
foriinicons:
if name == i.name:
self.iconBg =i

break

Ul callbacks

These are defined before globals because they're referenced by items in

the global buttons]] list.

def isoCallback(n): # Pass 1 (next ISO) or -1 (prev ISO)
global isoMode

setlsoMode((isoMode + n) % len(isoData))

def settingCallback(n): # Pass 1 (next setting) or -1 (prev setting)
global screenMode
screenMode +=n
if screenMode < 4: screenMode = len(buttons) - 1

elif screenMode >= len(buttons): screenMode = 4

def fxCallback(n): # Pass 1 (next effect) or -1 (prev effect)
global fxMode

setFxMode((fxMode + n) % len(fxData))
def quitCallback(): # Quit confirmation button
saveSettings()

raise SystemExit

def viewCallback(n): # Viewfinder buttons

global loadldx, scaled, screenMode, screenModePrior, settingMode, storeMode

206

if nis 0: # Gear icon (settings)
screenMode = settingMode # Switch to last settings mode
elif nis 1: # Play icon (image playback)
if scaled: # Last photo is already memory-resident
loadldx = saveldx
screenMode = 0 # Image playback
screenModePrior = -1 # Force screen refresh
else: #Loadimage
r = imgRange(pathData[storeMode])
if r: showlmage(r[1]) # Show last image in directory
else: screenMode = 2 # No images
else: # Rest of screen = shutter

takePicture()

def doneCallback(): # Exit settings
global screenMode, settingMode
if screenMode > 3:
settingMode = screenMode
saveSettings()

screenMode = 3 # Switch back to viewfinder mode

def imageCallback(n): # Pass 1 (next image), -1 (prev image) or 0 (delete)

global screenMode

207

208
if nis O:
screenMode =1 # Delete confirmation
else:

showNextimage(n)

def deleteCallback(n): # Delete confirmation
global loadldx, scaled, screenMode, storeMode
screenMode =0
screenModePrior = -1
if nis True:
os.remove(pathData[storeMode] + '/IMG_' + '%04d' % loadldx + '.JPG')
if(imgRange(pathData[storeMode])):
screen.fill(0)
pygame.display.update()
showNextimage(-1)
else: # Last image deleteted; go to 'no images' mode
screenMode = 2
scaled =None

loadldx =-1

def storeModeCallback(n): # Radio buttons on storage settings screen
global storeMode
buttons[4][storeMode + 3].setBg('radio3-0')

storeMode = n

209

buttons[4][storeMode + 3].setBg('radio3-1')

def sizeModeCallback(n): # Radio buttons on size settings screen
global sizeMode
buttons[5][sizeMode + 3].setBg('radio3-0')
sizeMode =n
buttons[5][sizeMode + 3].setBg('radio3-1'")

camera.resolution = sizeData[sizeMode][1]

def SetLowPot(): #This calibrates the pot to be at the zero pressure mark
global LowPot

LowPot=board.analog[1].read()

def SetHighPot(): #This calibrates the pot at the high end of pressure 30
global HighPot

HighPot=board.analog[1].read()

def ScalePotValues(): #Takes in potentiometer values and outputs pressures
global PressureReading
#LowPot=0
#HighPot=1
LowPressure=0
HighPressure=30

myreading=board.analog[1].read()

PressureReading=(myreading-LowPot)*(HighPressure-LowPressure)/(HighPot-
LowPot)+LowPressure

def VideoNameSetter():
global VideoName
global VideoNumber
WorkingDir='/media/EyeUSB/EyeVideos/'
exists=1
while (exists==1):

exists=0

if os.path.exists('/media/EyeUSB/EyeVideos/Myvideo'+str(VideoNumber)+'.h264'):

exists=1
print 'Finding File'

VideoNumber=VideoNumber+1

VideoName='/media/EyeUSB/EyeVideos/Myvideo'+str(VideoNumber)+'.h264'

def ConvertVideo():
camera.annotate_text=str('SAVING')
NewVideoName='/media/EyeUSB/EyeVideos/Myvideo'+str(VideoNumber)+'.mp4'
ProcessName=str('MP4Box -add '+str(VideoName)+' '+str(NewVideoName))
process=subprocess.Popen(ProcessName, shell=True, stdout=subprocess.PIPE)

process.wait()

Global stuff

210

screenMode = 3 # Current screen mode; default = viewfinder
screenModePrior =-1 # Prior screen mode (for detecting changes)
settingMode = 4 # Last-used settings mode (default = storage)
storeMode = 0 # Storage mode; default = Photos folder

storeModePrior =-1 # Prior storage mode (for detecting changes)

sizeMode = 0 #Image size; default = Large

fxMode = 0 #Image effect; default = Normal

isoMode = 0 #1SO settingl default = Auto

iconPath ='icons' # Subdirectory containing Ul bitmaps (PNG format)
saveldx =-1 #Image index for saving (-1 = none set yet)

loadldx =-1 #Image index for loading

scaled = None # pygame Surface w/last-loaded image

PressureReading=0 # This is the converted pressure reading from 0 and 1
LowPot =0 #Thisis the lower potetiometer value
HighPot =1 #Thisis the high potetiometer value

VideoNumber =1 #Starting Video Number

sizeData = [# Camera parameters for different size settings

Fullres Viewfinder Crop window

[(2592, 1944), (320, 240), (0.0 ,0.0 ,1.0 ,1.0)], #Large
[(1920, 1080), (320, 180), (0.1296, 0.2222, 0.7408, 0.5556)], # Med

[(1440, 1080), (320, 240), (0.2222, 0.2222, 0.5556, 0.5556)]] # Small

211

isoData = [# Values for ISO settings [ISO value, indicator X position]
[0, 27], [100, 64], [200, 97], [320, 137],

[400, 164], [500, 197], [640, 244], [800, 297]]

A fixed list of image effects is used (rather than polling

camera.IMAGE_EFFECTS) because the latter contains a few elements

that aren't valid (at least in video_port mode) -- e.g. blackboard,

whiteboard, posterize (but posterise, British spelling, is OK).

Others have no visible effect (or might require setting add'l

camera parameters for which there's no GUI yet) -- e.g. saturation,

colorbalance, colorpoint.

fxData = [
'none’, 'sketch’, 'gpen’, 'pastel’, 'watercolor', 'oilpaint’, 'hatch’,
'negative’, 'colorswap', '‘posterise’, 'denoise’, 'blur’, 'film',

'washedout', 'emboss', 'cartoon’, 'solarize']

pathData = [

#'/home/pi/Photos', # Path for storeMode = 0 (Photos folder)

'/media/EyeUSB/EyePics', #Place to store the files to USB

'/boot/DCIM/CANON999'] # Path for storeMode = 1 (Boot partition)

icons = [] # This list gets populated at startup

buttonsl] is a list of lists; each top-level list element corresponds

212

to one screen mode (e.g. viewfinder, image playback, storage settings),
and each element within those lists corresponds to one Ul button.

There's a little bit of repetition (e.g. prev/next buttons are

declared for each settings screen, rather than a single reusable

set); trying to reuse those few elements just made for an ugly

tangle of code elsewhere.

buttons =
Screen mode 0 is photo playback
[Button((0,188,320, 52), bg='done', cb=doneCallback),
Button((0, 0, 80, 52), bg="prev', cb=imageCallback, value=-1),
Button((240, 0, 80, 52), bg="next', cb=imageCallback, value= 1),
Button((88, 70,157,102)), # 'Working' label (when enabled)
Button((148,129, 22, 22)), # Spinner (when enabled)

Button((121, 0, 78, 52), bg="trash', cb=imageCallback, value= 0)],

Screen mode 1 is delete confirmation
[Button((0,35,320, 33), bg='delete'),
Button((32,86,120,100), bg="yn', fg="yes',
cb=deleteCallback, value=True),
Button((168,86,120,100), bg="yn', fg='no',

cb=deleteCallback, value=False)],

Screen mode 2 is 'No Images'

213

214

[Button((0, 0,320,240), cb=doneCallback), # Full screen = button
Button((0,188,320, 52), bg='done'), # Fake 'Done' button

Button((0, 53,320, 80), bg='empty')], # 'Empty' message

Screen mode 3 is viewfinder / snapshot

#[Button((0,188,156, 52), bg="gear’, cb=viewCallback, value=0),
[Button((0,240-128,128, 128), bg='Gear2', cb=viewCallback, value=0),
Button((164,188,156, 52), bg="play', cb=viewCallback, value=1),
Button((0, 0,320,240) , cb=viewCallback, value=2),

Button((88, 51,157,102)), # 'Working' label (when enabled)

Button((148, 110,22, 22))], # Spinner (when enabled)

Remaining screens are settings modes

Screen mode 4 is storage settings

[Button((0,188,320, 52), bg='done', cb=doneCallback),

Button((0, 0, 80, 52), bg="preV', cb=settingCallback, value=-1),
Button((240, 0, 80, 52), bg="'next', cb=settingCallback, value= 1),
Button((2, 60,100,120), bg="radio3-1', fg='store-folder",
cb=storeModeCallback, value=0),

Button((110, 60,100,120), bg="radio3-0', fg='store-boot’,
cb=storeModeCallback, value=1),

Button((218, 60,100,120), bg="radio3-0', fg='store-dropbox’,

cb=storeModeCallback, value=2),

Button((0, 10,320, 35), bg='storage')],

Screen mode 5 is size settings

[Button((0,188,320, 52), bg='done', cb=doneCallback),

Button((0, 0, 80, 52), bg="preV', cb=settingCallback, value=-1),
Button((240, 0, 80, 52), bg="'next', cb=settingCallback, value= 1),
Button((2, 60,100,120), bg="radio3-1', fg='size-I',
cb=sizeModeCallback, value=0),

Button((110, 60,100,120), bg="radio3-0', fg="size-m’,
cb=sizeModeCallback, value=1),

Button((218, 60,100,120), bg="radio3-0', fg='size-s',
cb=sizeModeCallback, value=2),

Button((0, 10,320, 29), bg='size')],

Screen mode 6 is graphic effect

[Button((0,188,320, 52), bg='done', cb=doneCallback),

Button((0, 0, 80, 52), bg="preV', cb=settingCallback, value=-1),
Button((240, 0, 80, 52), bg="'next', cb=settingCallback, value= 1),
Button((0, 70, 80, 52), bg="prev', cb=fxCallback , value=-1),
Button((240, 70, 80, 52), bg="next', cb=fxCallback , value=1),
Button((0, 67,320, 91), bg='fx-none'),

Button((0, 11,320, 29), bg="fx")],

Screen mode 7 is ISO

215

216
[Button((0,188,320, 52), bg='done', cb=doneCallback),
Button((0, 0, 80, 52), bg="preV', cb=settingCallback, value=-1),
Button((240, 0, 80, 52), bg="next', cb=settingCallback, value= 1),
Button((0, 70, 80, 52), bg="prev', cb=isoCallback , value=-1),
Button((240, 70, 80, 52), bg="next', cb=isoCallback , value=1),
Button((0, 79,320, 33), bg="iso-0'),
Button((9,134,302, 26), bg="iso-bar'),
Button((17,157, 21, 19), bg="iso-arrow'),

Button((0, 10,320, 29), bg="is0'")],

Screen mode 8 is quit confirmation

[Button((0,188,320, 52), bg='done' , cb=doneCallback),

Button((0, 0, 80, 52), bg="prev' , cb=settingCallback, value=-1),
Button((240, 0, 80, 52), bg="next' , cb=settingCallback, value=1),
Button((110, 60,100,120), bg='quit-ok', cb=quitCallback),

Button((0, 10,320, 35), bg="quit')]

Assorted utility functions

def setFxMode(n):
global fxMode
fxMode =n

camera.image_effect = fxData[fxMode]

217

buttons[6][5].setBg('fx-' + fxData[fxMode])

def setlsoMode(n):
global isoMode
isoMode =n
camera.ISO = isoData[isoMode][0]
buttons[7][5].setBg('iso-' + str(isoData[isoMode][0]))
buttons[7][7].rect = ((isoData[isoMode][1] - 10,) +

buttons[7][7].rect[1:])

def saveSettings():
try:
outfile = open(‘cam.pkl', 'wb')
Use a dictionary (rather than pickling 'raw' values) so
the number & order of things can change without breaking.
d={"fx' :fxMode,
'iso' :isoMode,
'size' : sizeMode,
'store' : storeMode }
pickle.dump(d, outfile)
outfile.close()
except:

pass

def loadSettings():
try:
infile = open(‘cam.pkl’, 'rb')
d = pickle.load(infile)
infile.close()
if 'fx' in d: setFxMode(d['fx'])
if 'iso' in d: setlsoMode(d['iso'])
if 'size' in d: sizeModeCallback(d['size'])
if 'store' in d: storeModeCallback(d['store'])
except:

pass

Scan files in a directory, locating JPEGs with names matching the
software's convention (IMG_XXXX.JPG), returning a tuple with the
lowest and highest indices (or None if no matching files).

def imgRange(path):

min = 9999
max=0
try:

for file in os.listdir(path):
if fnmatch.fnmatch(file, 'IMG_[0-9][0-9][0-9][0-9].JPG"):
i = int(file[4:8])
if(i < min): min =i

if(i > max): max =i

218

219
finally:

return None if min > max else (min, max)

Busy indicator. To use, run in separate thread, set global 'busy’

to False when done.

def spinner():
global busy, screenMode, screenModePrior
buttons[screenMode][3].setBg('working')
buttons[screenMode][3].draw(screen)

pygame.display.update()

busy = True

n =0

while busy is True:
buttons[screenMode][4].setBg('work-' + str(n))
buttons[screenMode][4].draw(screen)
pygame.display.update()
n=(n+1)%5

time.sleep(0.15)

buttons[screenMode][3].setBg(None)
buttons[screenMode][4].setBg(None)

screenModePrior = -1 # Force refresh

def takePicture():

global busy, gid, loadldx, saveldx, scaled, sizeMode, storeMode, storeModePrior, uid

if not os.path.isdir(pathData[storeMode]):
try:
os.makedirs(pathData[storeMode])
Set new directory ownership to pi user, mode to 755
os.chown(pathData[storeMode], uid, gid)
os.chmod(pathData[storeMode],
stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR |
stat.S_IRGRP | stat.S_IXGRP |
stat.S_IROTH | stat.S_IXOTH)
except OSError as e:
errno = 2 if can't create folder
print errno.errorcode[e.errno]

return

If this is the first time accessing this directory,
scan for the max image index, start at next pos.
if storeMode != storeModePrior:
r = imgRange(pathData[storeMode])
if ris None:
saveldx=1

else:

220

221
saveldx=r[1] +1
if saveldx > 9999: saveldx =0

storeModePrior = storeMode

Scan for next available image slot

while True:
filename = pathData[storeMode] + '/IMG_' + '%04d' % saveldx + '.JPG'
if not os.path.isfile(filename): break
saveldx +=1

if saveldx > 9999: saveldx =0

t = threading.Thread(target=spinner)

t.start()

scaled = None
camera.resolution = sizeData[sizeMode][0]
camera.crop = sizeData[sizeMode][2]
try:
camera.capture(filename, use_video_port=False, format='jpeg’,
thumbnail=None)
Set image file ownership to pi user, mode to 644
os.chown(filename, uid, gid) # Not working, why?
os.chmod(filename,

stat.S_IRUSR | stat.S_IWUSR | stat.S_IRGRP | stat.S_IROTH)

img = pygame.image.load(filename)

scaled = pygame.transform.scale(img, sizeData[sizeMode][1])

finally:
Add error handling/indicator (disk full, etc.)
camera.resolution = sizeData[sizeMode][1]

camera.crop =(0.0,0.0, 1.0, 1.0)

busy = False

t.join()

if scaled:
if scaled.get_height() < 240: # Letterbox
screen.fill(0)
screen.blit(scaled,
((320 - scaled.get_width())/ 2,
(240 - scaled.get_height()) / 2))
pygame.display.update()
time.sleep(2.5)

loadldx = saveldx

def showNextimage(direction):

global busy, loadldx

222

223
t = threading.Thread(target=spinner)

t.start()

n = loadldx
while True:
n += direction
if(n>9999):n=0
elif(n <0): n=9999
if os.path.exists(pathData[storeMode]+'/IMG_'+'%04d'%n+'.JPG'):
showlmage(n)

break

busy = False

t.join()

def showlmage(n):
global busy, loadldx, scaled, screenMode, screenModePrior, sizeMode, storeMode
t = threading.Thread(target=spinner)

t.start()

img = pygame.image.load(
pathData[storeMode] + '/IMG_' + '%04d' % n + '.JPG')
scaled = pygame.transform.scale(img, sizeData[sizeMode][1])

loadldx =n

224

busy = False

t.join()

screenMode = 0 # Photo playback

screenModePrior = -1 # Force screen refresh

Initialization

Init framebuffer/touchscreen environment variables
os.putenv('SDL_VIDEODRIVER', 'fbcon')
os.putenv('SDL_FBDEV' ,'/dev/fbl')
os.putenv('SDL_MOUSEDRV' , 'TSLIB')

os.putenv('SDL_MOUSEDEV' , '/dev/input/touchscreen’)

Get user & group IDs for file & folder creation
(Want these to be 'pi' or other user, not root)
s = os.getenv("SUDO_UID")

uid = int(s) if s else os.getuid()

s = os.getenv("SUDO_GID")

gid = int(s) if s else os.getgid()

Buffers for viewfinder data

rgb = bytearray(320 * 240 * 3)

225

yuv = bytearray(320 * 240 * 3/ 2)

Init pygame and screen
pygame.init()
pygame.mouse.set_visible(False)

screen = pygame.display.set_mode((0,0), pygame.FULLSCREEN)

Init camera and set up default values

camera = picamera.PiCamera()
atexit.register(camera.close)

camera.resolution = sizeData[sizeMode][1]

#camera.crop = sizeData[sizeMode][2]

#camera.crop =(0.0, 0.0, 1.0, 1.0) #Orginall

zooma=.4

shiftY=.08

esides=.04

#Look up value for ROI default (0.0, 0.0, 1.0, 1.0) (x, y, w, h)

camera.crop = (zooma+esides/2, zooma-shiftY, 1-zooma*2-esides, 1-zooma*2-esides)

Leave raw format at default YUV, don't touch, don't set to RGB!
Load all icons at startup.
for file in os.listdir(iconPath):

if fnmatch.fnmatch(file, '"*.png'):

icons.append(lcon(file.split('.")[0]))

226

Assign Icons to Buttons, now that they're loaded
for s in buttons: # For each screenful of buttons...
forbins: # For each button on screen...
foriinicons: # Foreachicon...
if b.bog ==i.name: # Compare names; match?
b.iconBg=i # Assign Icon to Button

b.bg =None # Name no longer used; allow garbage collection

if b.fg ==i.name:
b.iconFg =i
b.fg =None

loadSettings() # Must come last; fiddles with Button/Icon states

Main loop
videostarted=0

VideoNameSetter()

while(True):
exit_state=GPIO.input(ExitButton)
Picture_state=GPIO.input(PICBUTTON)
LowPot_state=GPIO.input(LowButton)

HighPot_state=GPIO.input(HighButton)

ScalePotValues()

camera.annotate_text=str("%.2f" % PressureReading)

#No TOuch SCreen controls

if Picture_state==False:

print("Taking your picture")

print("Starting Video")

if videostarted==0:

H#

H#

H#

H#

H#

H#

H#

H#

H#

H#

H#

camera.start_recording(VideoName,splitter_port=3)
camera.annotate_text=str('STARTED')
videostarted=1

pos =[100,100]

for b in buttons[screenMode]:

if b.selected(pos): break

Process touchscreen input
while True:
for event in pygame.event.get():
if(event.type is MOUSEBUTTONDOWN):
pos = pygame.mouse.get_pos()
print(pos)
for b in buttons[screenMode]:

if b.selected(pos): break

227

i

i

i

i

i

228
If in viewfinder or settings modes, stop processing touchscreen
and refresh the display to show the live preview. In other modes
(image playback, etc.), stop and refresh the screen only when
screenMode changes.

if screenMode >= 3 or screenMode != screenModePrior: break

Refresh display

if screenMode >= 3: # Viewfinder or settings modes

stream = io.ByteslO() # Capture into in-memory stream

camera.capture(stream, use_video_port=True, format="raw')

stream.seek(0)

stream.readinto(yuv) # stream -> YUV buffer

stream.close()

yuv2rgb.convert(yuv, rgb, sizeData[sizeMode][1][0],

sizeData[sizeMode][1][1])
img = pygame.image.frombuffer(rgb[0:
(sizeData[sizeMode][1][0] * sizeData[sizeMode][1][1] * 3)],
sizeData[sizeMode][1], 'RGB')
elif screenMode < 2: # Playback mode or delete confirmation
img =scaled # Show last-loaded image
else: # 'No Photos' mode

img = None # You get nothing, good day sir

if img is None or img.get_height() < 240: # Letterbox, clear background

screen.fill(0)
if img:
screen.blit(img,
((320 - img.get_width()) / 2,

(240 - img.get_height()) / 2))

Exitthe progrgram
if exit_state==False:
print("Ending Program: Goodbye")
if videostarted==1:
camera.stop_recording(splitter_port=3)

ConvertVideo()

board.exit() #otherwise will cause bad errors

break

Calibrating the low state
if LowPot_state==False:
SetLowPot()

print("Calibrated Low State")

Calibrating the high state
if HighPot_state==False:

SetHighPot()

229

230

print("Calibrated High State")

Overlay buttons on display and update <- Create a button that updates the pot state on
picture

fori,b in enumerate(buttons[screenMode]):

b.draw(screen)

pygame.display.update()

screenModePrior = screenMode

231

