

 Interacting with the Human Eye: Gaze Vector Shape Based Recognition

and the Design of an Improved Episcleral Venomanometer

by

Trevor L. Craig

A Thesis

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Mechanical Engineering & Applied Mechanics

Under the Supervision of Professor Carl Nelson

Lincoln, Nebraska

August, 2017

Interacting with the Human Eye: Gaze Vector Shape Based Recognition

and the Design of an Improved Episcleral Venomanometer

Trevor Lynn Craig, M.S.

University of Nebraska, 2017

Advisor: Carl Nelson

 The sense of sight is one of the main outlets to how we interact with the world.

Using eye tracking methods, this sensory input channel may also be used as an output

channel to provide commands for robots to follow. These gaze-commanded robots could

then be used to assist severely mobility-limited individuals in the home or similar

environments. This thesis explores the use of visually drawn shapes as the input for robot

commands. These commands were recorded using low-cost gaze tracking hardware

(Gazepoint GP3 Eye Tracker). The data were then processed using a custom algorithm in

MATLAB to detect commands to be passed to two different mobile robots. The ability to

use stochastic analysis for path prediction is also explored. Using the techniques and

procedures given in this paper, people with limited mobility will be able to input shape

commands to have robots react as personal assistants. This research is extensible to gaze-

based human-machine interfaces in general for a variety of applications.

In order to better under understand the eye, improvements and retro-fitting of an

episcleral venomanometer were conducted. A portable video enabled venomanometer

was created to observe vein occlusion and its correlating pressure. This was then

improved upon through design iteration. The current issue with measuring is receiving

accurate and precise readings of eye parameters due to variations in user technique.

Designing improved medical devices for collection of information on ocular health and

function will provide better understanding of related medical conditions, including but

not limited to, glaucomatous damage.

Contents
CHAPTER 1: Introduction ... 8

CHAPTER 2: APPROACH ... 14

i. BACKGROUND: .. 14

ii. STATE MACHINE CONCEPT:.. 15

CHAPTER 3: METHODS ... 17

i. PROCEDURE: ... 17

ii. SHAPERECOGN (HIGH-LEVEL ALGORITHM): .. 18

iii. CENTER FINDING TECHNIQUES: .. 18

iv. FILTERING: ... 19

v. BEST FIT RADIUS ALGORITHM .. 21

vi. CORNER FINDING ALGORITHM ... 22

vii. HOUGH TRANSFORM METHODS .. 23

a. PREPROCESSING: .. 24

b. SHAPE DETECTION ALGORITHM: ... 24

viii. FINAL RESULT: ... 27

CHAPTER 4: RESULTS: .. 28

i. BEST FIT RADIUS ALGORITHM: .. 29

ii. CORNER FINDING ALGORITHM: ... 31

iii. HOUGH METHODS: ... 32

a. AREA OF HOUGH TRANSFORM METRIC: .. 32

b. MEAN OF HOUGH TRANSFORM METRIC: .. 33

c. SLOPE OF HOUGH TRANSFORM METRIC: .. 34

d. MEDIAN OF HOUGH TRANSFORM METRIC: .. 36

iv. RESULTS SUMMARY: ... 37

v. HUMAN TESTING: ... 37

vi. TESTING WITH NAO ROBOT: ... 41

vii. TESTING WITH LOCATION DEPENDENT COMMANDS: ... 41

CHAPTER FIVE: STOCHASTIC ANALYSIS .. 44

i. FORECASTING: ... 51

ii. FREQUENCY, DAMPING RATIO, POWER (VARIANCE) CONTRIBUTION: 54

iii. DISCUSSION: .. 55

CHAPTER SIX: EPISCLERAL VENOMANOMETER ... 58

i. INTRODUCTION: .. 58

ii. PROBLEM DESCRIPTION: .. 60

iii. SOLUTION: ... 62

a. ITERATION 1: .. 62

b. ITERATION 2: .. 66

c. ITERATION 3: .. 71

d. ITERATION 4: .. 73

e. ITERATION 5: .. 77

CHAPTER SEVEN: CONCLUSIONS ... 81

i. CONCLUSION OF GAZE VECTOR SHAPE BASED RECOGNITION ... 81

ii. CONCLUSION OF DESIGN OF AN IMPROVED EPISCLERAL VENOMANOMETER: 82

ACKNOWLEDGEMENT: ... 84

Works Cited .. 85

APPENDIX 1: ... 92

Stocachstic Equations: ... 92

Circle Y: .. 96

Square X: .. 99

Square Y: .. 103

Triangle X: .. 106

Triangle Y: .. 111

Summary: ... 114

HOUGH TRANSFORMS: .. 115

Circle: ... 115

Square: ... 119

Triangle: ... 122

Summarized Results: .. 124

Appendix 2: .. 126

Iteration 1: ... 126

Iteration 2: ... 129

Iteration 3: ... 131

Iteration 4: ... 133

Iteration 5: ... 135

APPENDIX 3: ... 139

ShapeRecognGuiTest.m: .. 140

Settings.ini: .. 147

Inifile.m: ... 152

GazePointApi:... 171

FindtheCenter.m: ... 174

DataFilter.m: .. 175

ShapeRecognFnc.m: ... 176

ShapeScanner.m: ... 184

CornerDetection.m: ... 185

ShapeDetect.m: ... 187

HoughAssist.m: .. 194

DISPLAYXY.m: ... 195

ProgramLauncer.m: ... 196

SaveToFiles.m: ... 197

RandomName.m: ... 198

RandomTestOrder.m: .. 199

List of Figures:

Figure 1: Nintendo Hands Free Controller ... 9

Figure 2. Shape guide with hypothetical command overlay ... 15

Figure 3. General data flow for shape detection ... 18

Figure 4. Smoothing Example .. 20

Figure 5. Saccade Example ... 21

Figure 6. Smooth Shape Example .. 21

Figure 7. Drawn a shape with bounds for best-fit radius algorithm .. 22

Figure 8. Corner Locations for the Circle ... 23

Figure 9: Enclosed Shapes .. 25

Figure 10. Unique Graphs for Respective Shapes from Fig. 8 .. 27

Figure 11. Example of Slope and Peak Location for Square .. 35

Figure 12. User Interface ... 38

Figure 13. The NAO robot is responding to gaze-based commands ... 41

Figure 14. Robot at Position A ... 42

Figure 15. Robot with 3 LEDs ... 43

Figure 16: ARMA (2,1) Model Circle X Coordinate ... 48

Figure 17: ARMA (2,1) Model Circle X Coordinate Future Predictions .. 49

Figure 18. Episcleral Venomanometer .. Error! Bookmark not defined.

Figure 19. Espiceral Venous Pressure Pictures .. 59

Figure 20. Basic Anatomy of the Human Eye ... 61

Figure 21: Raspberry Pi Zero .. 63

Figure 22: Adafruit PiTFT 2.8" Touchscreen .. 64

Figure 23. Iteration 1 ... 65

Figure 24: Lipped and Groove Back Plate .. 66

Figure 25: Electronics Bay .. 67

Figure 26: Iteration 2 ... 68

Figure 27. Potentiometer Arm ... 69

Figure 28: Loc-Line Tubing ... 70

Figure 29. Carson MicroBrite Pocket Microsocpe ... 71

Figure 30. Iteration 3 ... 72

Figure 31. JamStand and Gooseneck ... 74

Figure 32. Iteration 4 ... 75

Figure 33. Iteration 5 ... 79

8

CHAPTER 1: Introduction

Assistive robots have been given significant research attention in recent decades,

especially in the home care domain for facilitating and enhancing the daily living, of the

disabled and elderly. Extensive effort has been put forward to enhance robot capability in

performing various tasks like cooking [1], [2], doing laundry [3], [4], object retrieval [5],

[6], performing bed baths [7], assisting walking [8], [9], etc. However, with continuously

increased functionality and complexity of the robotic system [10], [11], [12], managing

these robots becomes inevitably more complex [13], which is burdensome or even

infeasible with traditional control interfaces consisting of buttons, switches, knobs, touch

screens, motion control, and joysticks. Moreover, new challenges arise in designing for

human-robot interactions (HRI) due to the fact that a large portion of the target user

population is disabled or elderly. The question of how the human user can effectively and

efficiently interact with these robotic systems has drawn much attention in robotics

research.

Even common devices such as keyboards are being optimized for enhanced

durability, faster response times, different feels of the click, and ergonomics. The

keyboard market for mechanical keyboards alone is $602.1 million with growth to $642.2

million by the end of 2016 [14]. The market for computer input devices and expansion is

huge. A subset of this larger market is people who do not have the ability to use the

newest keyboard or touchscreen; these individuals are the group whose physical or

neurological problems do not allow this common input method. The video game

company Nintendo had devised a partial solution to this problem by creating the NES

9

Hands Free controller, Figure 1. Directional input is achieved by adjusting the controller

with your chin and button presses are replaced by sucking in or blowing out air. These

devices allowed minor fitting adjustments with straps and required partial movement of

the player; although not ideal it allowed basic communication to the NES console.

Figure 1: Nintendo Hands Free Controller

To facilitate human-robot interaction, researchers have been investigating various

new communication signals to extend the communication channels. These new

communication signals are mainly adapted from natural interpersonal communication

signals and biosignals, including speech [15], [16], facial expressions [17], [18], body

gestures [19], [20], electromyography (muscle) signals (EMG) [21], [22], and

electroencephalogram brain signals (EEG) [23], [24]. The goal of this investigation is to

find the applicable communication signal that can be handled by the user with little effort

to learn and utilize. Substantial research has been conducted on these signals mentioned

10

above to validate their feasibility and investigate their functionality. However, there is

another promising natural signal, eye gaze, which has not been given enough attention in

HRI. According to a new market research report [25] the eye tracking business is quickly

expanding as well, estimated to reach $1,028.1 million by 2020. Although the market is

large, the applications are not yet fully realized.

Gaze represents where a person is looking, which is estimated from eye

movements. In light of monitoring technologies, gaze tracking can be categorized into

three types: contact lens [26], video-based optical methods [27], [28], [29], [30], and

electrooculogram (EOG) [31]. Nowadays, the most widely used technology is video-

based eye tracking, a noninvasive optical method; in contrast, the other two need direct

contact with the eyeballs or the skin around the eyes. Gaze tracking technology has been

investigated for a long time and was widely used as a tool for human behavior studies to

support research in neurobiology [32], [33], psychology [34], [35], computer science

[36], [37], and human factors [38], [39]. However, there is limited work reported which

used gaze as an interaction modality.

Gaze as an interaction modality between a human and a robot is natural and

effortless, which makes it particularly promising for the disabled and elderly. Gaze is a

natural communication modality among humans; for example, one person often uses

his/her gaze to guide another person to an object of interest for joint attention. Managing

gaze to look at particular locations is almost effortless, which does not require learning.

11

Even though the gaze modality is promising HRI, it is quite difficult to effectively

utilize it to generate various control commands. Without appropriate interpretation, gaze

has only been used as a pointing device to select a target from a candidate pool. One

popular gaze interpretation method is to use the gaze direction to trigger a step driving

command along one particular direction. In [31], [40], [41], wheelchairs were steered by

gaze to move forward, backward, left or right, and the same method has also been used to

steer a mobile robot in [42]. Similarly, gaze was used to drive a quadcopter [43] or rotate

a robotic laparoscope system [44], [45] upward, downward, left or right. In these studies,

a user had to continuously generate step driving commands using gaze until the robot

incrementally reached the destination. However, gradually steering the robots step by

step using gaze could be tedious for the users.

In previous work, users directly specify the destination that a robot needed to

approach using gaze, which avoided triggering the incremental steering commands. In

[46], [47], [48], gaze was used to define the concentration area of a robotic laparoscope

system, and in [49], gaze was used to define the destination of a mobile robot.

Controlling a robot by defining the goal using gaze is much easier as the users only need

to generate the control command once, rather than repetitively triggering the incremental

steering commands. Thus, the mental and physical burden can be reduced.

In these gaze-based robotic interaction examples, gaze has only been used to

navigate robots to approach a desired location or orientation by controlling their motion,

such as driving forward, backward, left and right. However, methods for generating rich

and varied control commands, to interact with a robot, still constitutes an open problem.

12

One attempt to generate various commands using eye gaze signals is to

create/code a blink-based language with which the user indicates commands by blinking

the eyes in patterns based on duration, number, and/or frequency. This has been

previously used to control wheelchairs [50] but requires up to 4 blinks for simple

commands. This is impractical for complex commands, as it involves memorizing

multiple blink-based patterns, requires the ability to stop blinking after long commands,

and includes the assumption that the user does not blink to re-center their eyes or

otherwise introduce “false positive” blink events. A problem with using timing for the

duration of blinks is that humans are not extremely accurate at controlling this, and the

blink duration will vary from person to person as well as be influenced by factors such as

fatigue [51].

Another downfall of blink-based algorithms is the presence of involuntary blink

events. Involuntary blinking, along with quick eye movements (called saccades),

increases with the complexity of a given situation [52]. For example, in heavy traffic a

person may blink 22.1 times per minute with 20.2 saccades per minute; this is compared

to low complexity values of 19.6 and 11.7 respectively [52]. Depending on the situation,

these involuntary eye movements and blinks could be difficult to distinguish from

intentional commands. Regardless of these shortcomings, tracking blink events

accurately has been accomplished [53] but should be used with moderation as the human

variation in blink duration [51] and the inaccuracies introduced by involuntary blinking

[52] could provide unsatisfactory results. With the addition of saccade effects [52], there

seem to be too many issues to rely on blinking alone.

13

As a result of the numerous deficiencies, a new approach is suggested in this

thesis. This new approach suggests that drawing shapes with the eye gaze will allow for

more complex command inputs, greater remembrance of commands, and fewer mistakes

interpreting the input compared to the blink-based approach. This approach can use

blink-based commands to instruct the program when to start and stop recording shape-

based commands. Through this combination of blink and gaze data channels, fewer errors

are anticipated and a more natural HRI may be achieved. This thesis aims to explain the

process of how these techniques work and how they are designed with the severely

disabled user in mind to facilitate activities of daily living. A primary motivation is to

enable robotic assistance for individuals with limited mobility and motor control, with the

assumption that these individuals retain full control of eye movements (consistent with

certain types of injury to, and degenerative diseases of, the nervous system). The gaze-

based command language will create a diverse command set for the robot to carry out.

14

CHAPTER 2: APPROACH

i. BACKGROUND:

This work was carried out under the assumption that users have the ability to

move their eyes; this is especially important in consideration of the target population of

physically- and mobility-challenged users. We also assume the use of eye tracking

software using a conventional computer monitor or screen (the Gazepoint GP3 Eye

Tracker system is used in this work). The Gazepoint system collects data at 60 Hz, is

accurate to within one degree of visual angle, and is compatible with a maximum screen

size of 24 inches [54]. The software transforms the x and y pixel coordinates on the

screen into coordinate gaze vectors which are used to construct the shapes for command

detection, as described below. Coordinate vector tracking has been successfully

accomplished in this way in previous research projects [55] for other applications.

 Since a screen or monitor must be used with the Gazepoint system, it can also be

used to feed information back to the user about the possible commands available (or

provide context specific prompts). Overlaid guidance for drawing shapes can be provided

as seen in Figure 2. This aspect is important as it reduces a user’s workload of

memorizing the commands and thus improves the user experience for people with

impairment who may be confused by the technology. This will also improve the

command detection accuracy as the user can trace the shape with their eyes. Using a

screen allows for many different modes of feedback to the user, and indication of intent

from the robot.

15

Figure 2. Shape guide with hypothetical command overlay

The scope of commands in this work is based on commercially available robots

suitable for HRI. We adopt the small humanoid platform called NAO (Aldebaran

Robotics) [56] as one of two experimental platforms, with the other being a custom-built

wheeled robot. Algorithm results (gaze-based commands) are transmitted to the

respective robot for execution by its integrated control software.

ii. STATE MACHINE CONCEPT:

A general concept that can be utilized to help simplify commands in the gaze-

based language is the idea of state dependent commands. State-dependent programming

allows for a limited set of options to be available to the user in a particular situation. A

common example of a state machine is the context-specific menus that appear when

performing a right mouse click in most software. This programming structure makes

sense for assistant robots as not every command will be applicable or needed for every

situation. The system can predict the user’s likely set of intentions based on knowledge of

the robot’s surroundings, location, etc. and only enable relevant commands. This context-

sensitive menu can then be displayed to the user on the screen when the user instructs the

16

program to start recording shape-based commands. This type of contextual interaction is

achievable with the NAO robot using its documented object recognition capabilities [57].

The state-machine framework can be further illustrated by an example pertinent to

our goal of assistive HRI. If NAO knew it was in the kitchen and recognized an empty

glass on the table, this could trigger menu options such as ‘fill the glass’ or ‘put the glass

in the cupboard’. These options would be displayed to the user’s screen, and after

command input, a final blink approval could be administered for command execution.

Rather than elaborate on the development of state-based menu options for HRI in

this paper, we focus on the task of recognizing shapes from user gaze (and distinguishing

between different shapes). These shapes are the building blocks of a state-based HRI

framework, as a few shape primitives can be used to “drill down” into the state- or

context-specific menus displayed to the user. We specifically consider circles, triangles,

and squares as candidate shapes.

17

CHAPTER 3: METHODS

 This section presents the concepts of how the shape detection algorithm works

and the reasoning behind its different elements; more explanation for specific results is

discussed later in the thesis.

i. PROCEDURE:

The main program takes in gaze vectors in x and y coordinates and then runs

through multiple testing procedures to determine which shape is traced (if a shape exists

in the data). The overall flow process can be followed in Figure 3. For the convenience of

the user and to account for variations among user characteristics and preferences, all

settings used for determining the shape can be personalized for best performance.

Experiments were run with these same processes as described in more detail below, to

determine if using eye gaze to draw a shape was comparable to drawing shapes with a

mouse. A final score was calculated, known as the Shape Points Score Estimation

(SPSE), based on combined results of six different metrics which will be described in

more detail (best-fit radius, corner detection, the area of Hough transform, the mean of

Hough transform, the slope of Hough transform, the median of Hough transform).

SPSE = ∑ wi(1 −
Mi,actual−Mi,ideal

Mi,ideal
)n

i=1 (1)

For n=6 shape-matching metrics (normalized Mi), each is multiplied by a weight

wj which is found through calibration (see Table 1 below). Higher metrics indicate a

stronger correlation to matching the respective ideal shape.

18

Figure 3. General data flow for shape detection

ii. SHAPERECOGN (HIGH-LEVEL ALGORITHM):

The main core of the program (the high-level algorithm) is a script called

ShapeRecogn. This program takes in the settings.ini file and calls other functions,

combining their results to output the command that can be interpreted by the robot. The

user inputs the centroid of their position of interest by allowing the gaze to dwell on it

and blinking once (detected from the eye gaze data, analogous to a mouse click) and the

software then tracks the subsequent x and y gaze data, passing it to the various shape

detection subroutines described below. The user blinks again to end the collection of

shape data. The same effect is achieved with a mouse using a right click to start drawing

and a right click to end drawing. Both sets of data (gaze-input and mouse-input) included

shapes across a spectrum of “neatness” to reflect the inexact nature of the input data that

would typically be input to the algorithm.

iii. CENTER FINDING TECHNIQUES:

The center of the object that is drawn is important for many aspects of the control

algorithm. When shapes are drawn with the eyes, the center location may need further

refinement, due to the high variance of the gaze point. Two options are available to the

19

user for center finding. One is optimized for speed and suffers in robustness whereas the

other is optimized for shapes that are shifted off of their center location. The first option

takes the mean value for both the eye gaze coordinate vectors in x and y and then

calculates this as the center. The drawback of this method is that it is heavily affected by

the noise of the unfiltered vectors. The other option is taking the vectors and creating a

closed shape that is then converted to a binary image, for which properties information

can be generated using the MATLAB function regionprops(). From there the centroid can

be found from the statistics. This method is more computationally intensive but creates

more accurate responses and is the chosen method by default.

iv. FILTERING:

The original gaze vectors are very noisy and need to be filtered for better shape

recognition. Multiple steps are done to ensure accurate filtering. Some unintentional side

effects of the filtering will be rounder corners, a slight decrease in shape size, and less

gaze coordinate vector data overall to process. The first step is taking the standard

deviation of both the x and y portions of the gaze vectors. This is then used as a criterion

to reject outliers that are more than 1.5 times past the standard deviation from the center.

This works as all usable data will be within the same general area, and the data beyond

this threshold represent saccades or the start or end of drawing a shape. This also helps

account for blinking as the eyes can jump far from the intended target during a blink.

The next step is a moving average filter that helps smooth the lines for easier

shape detection, as shown in Figure 4. The filter size is dependent on a percentage of the

total gaze data points from the start of the shape to the end of the shape. The default is set

20

to 10%. The results of the filtering can be seen in Figure 4, Figure 5, and Figure 6. Notice

that Figure 6 did not need much filtering and as a result little filtering was done.

The importance of filtering data from gaze, as compared to other inputs such as a

mouse, is due to the existence of saccades. Large saccades can cause the center of a shape

to shift in the direction of the saccade leading to inaccurate detections, as in Figure 5. To

combat this issue, an extra step to re-compute the center can be done after filtering is

completed. This increases processing time but can also increase detection accuracy.

Figure 4. Smoothing Example

21

Figure 5. Saccade Example

Figure 6. Smooth Shape Example

v. BEST FIT RADIUS ALGORITHM

ShapeRecogn reads the x and y coordinates of gaze data for the shape and the

position of interest. The maximum and minimum distance from the position of interest

(centroid) are found, and these values are used to construct bounding shapes as illustrated

in Figure 7. A subroutine then counts the points that fall between the two shapes or

bounds and calculates a score. The score is a percentage of points that fell within the

bounds. The best length scale (e.g. radius, side length, hereafter referred to as radius for

22

all shapes) to fit the data is found for the three shapes, along with a percentage output

representing the amount of data that fits within those bounds. These bounds can be

adjusted in the settings.ini file depending on the degree of the disability and personal

preference of the user. However, it should be noted that adjusting the bounds for each

shape differently may affect the detection success negatively, as with large bounds

squares may be detected as circles. The results are returned to the main function

ShapeRecogn. This function executes quickly for small radius values, but as the radius

increases the computational time also increases. The same issue occurs for poorly drawn

shapes as the minimum radius may be quite small and the maximum radius quite large

due to the roughness of the drawn shape.

Figure 7. Drawn a shape with bounds for best-fit radius algorithm

vi. CORNER FINDING ALGORITHM

The next metric uses Harris corner detection [58]. This metric uses the data for

each radius from the best-fit radius algorithm and checks the corners at “expected”

locations (based on the shape templates used in the menu structure). A buffer can be

adjusted to allow for the sharpness of the corner to detect and the zone to search for each

shape. In the case of circles, the entire profile is checked to check to see if any corners are

detected on the shape; this is best seen in Figure 8. In Figure 8, asterisks are placed where

the corner would be for each radius value; in the circle case, a circle profile is used

23

instead of asterisks. The number of corners detected then becomes a metric for SPSE that

is returned to ShapeRecogn.

Figure 8. Corner Locations for the Circle

vii. HOUGH TRANSFORM METHODS

The next subroutine uses the Hough transform for shape detection. The Hough

transform is designed to detect lines in a binary image. The function uses the parametric

representation of a line [59]:

𝜌 = 𝑥𝑐𝑜𝑠(𝜃) + 𝑦𝑠𝑖𝑛(𝜃) (2)

The function returns , the distance from the origin to the line along a vector

perpendicular to the line, and θ, the angle in degrees between the x-axis and this vector.

These data are used to create the histograms in Figure 10, with  related to Hough matrix

intensity. This process is used in several shape detection methods which follow.

𝐻𝑗𝑘 = {
1, 𝐻𝑗𝑘 = 𝑖

0, 𝐻𝑗𝑘 ≠ 𝑖

𝑑𝑖 = ∑ ∑ 𝐻𝑗𝑘
𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑜𝑓 𝐻
𝑘

𝑜𝑓 𝑟𝑜𝑤𝑠 𝑜𝑓 𝐻
𝑗=1 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1: max (max (𝐻) (3)

24

This produces a graph where the x-axis roughly represents an increase of radius

by 1 and the y-axis is the sum of the number of points in the Hough transform matrix that

correspond to that radius. A data set might consist of 283 data points from the original

493 points in x and 493 points in y that created a Hough matrix of size 2371x360. The

size of these parameters will change for every shape drawn but share similar shape

characteristics.

a. PREPROCESSING:

A preprocessing step was implemented to speed up the runtime of the program.

This preprocessing step was to create large tables of data for perfect shapes at various

radii; this decreases program runtime by using reference values from tables (a “lookup”

approach) rather than calculating the Hough transform for each possible shape and

comparing data against the drawn shape. All of these calculations otherwise would create

more processing time that the possibly disabled user has to wait as their gaze vectors are

being calculated. This preprocessing step is a unique aspect of this project, as the image

only consists of the shape drawn, whereas in most other applications of the Hough

transform further processing and filtering are done to achieve accurate Hough data.

b. SHAPE DETECTION ALGORITHM:

 The Shape Detection Algorithm subroutine starts with the best radius for each

shape and the drawn image. The drawn image consists of coordinate vectors that are

connected to create an enclosed shape; this can be seen in Figure 9. This shape is then

25

filled to be able to apply the Hough transform efficiently. Due to preprocessing, the

perfect Hough transform data is retrieved from tables, and only one Hough transform is

required (for the traced image), speeding up the process. The values from the table are

compared with the input data to determine the different metrics for each shape.

Figure 9: Enclosed Shapes

The drawn shape after the Hough transform is compared to the data from

idealized shapes in preprocessing. The data can be represented in graph form as seen in

Figure 10. The parameters for comparison are the area under the curve, the median, the

average value at low Hough intensity, and the slope of the data. The slope of the data was

calculated using representative points near the lowest intensity and the peak of the

intensity histogram. The peak point location is calculated by the highest intensity of the ρ

value (eq. 2). Figure 10 shows the Hough graphs for Circle, Square, and Triangle from

the shapes in Figure 9 respectively, along with corresponding idealized shapes.

26

27

Figure 10. Unique Graphs for Respective Shapes from Fig. 8

viii. FINAL RESULT:

The result of the shape detection algorithm is determined by combining the

different metrics from all of the subroutines (eq. 1). These functions create a score for

each shape. The highest score is the shape that the program chooses as the correct shape.

If the score is below a minimum threshold, no shape is chosen. All shapes receive a score

due to normalization. The results of each test can be saved. This is helpful for testing and

further analysis of the data to create a better fit for each user and each disability (patient-

specific tuning of the algorithm). With the results of this program, commands can be sent

to the robot to perform various assistive tasks.

28

CHAPTER 4: RESULTS:

A total of 120 traced shapes were analyzed (20 for each of the three test shapes,

repeated using both gaze and mouse input). The weights for one user were calibrated

from a small data set and are presented in Table 1. Table 2 and Table 3 show the average

SPSE score of 20 results for each shape, using gaze and mouse input respectively. The

rows represent the average value for each intended shape that was drawn, whereas the

columns represent the shape-detection results. It is interesting to note the differences

between the experiments done with the eyes compared to the experiments done using

mouse input. The gaze-based SPSE values are all lower than the SPSE for the mouse-

drawn results. This is further explained by looking at each metric individually to check

the validity of the solution. It is important to note that the bold numbers represent the

intended shape and intended result. These are always highest for final results, indicating

that the valid results are returned.

Table 1. WEIGHTS USED FROM CALUBRATION

Metric Radius Corner Area Mean Slope Median

Weights 10 3 4 4.5 3 3

29

Table 2. SHAPE DETECTION FINAL RESULTS USING EYE GAZE

Shape Detected

Circle Square Triangle

S
h
ap

e
D

ra
w

n
 Circle 18.6067 14.89301 9.617871

Square 11.92702 18.54621 9.597459

Triangle 12.43349 9.56102 18.42686

Table 3. SHAPE DETECTION FINAL RESULTS USING MOUSE INPUT

Shape Detected

Circle Square Triangle

S
h
ap

e
D

ra
w

n
 Circle 21.79355 13.6458 5.932328

Square 14.08615 21.06246 5.226813

Triangle 6.929033 10.48045 20.13124

i. BEST FIT RADIUS ALGORITHM:

 The first metric was from the percentage of data points that fell within the

bounding shapes in the best--fit radius algorithm and then multiplying by the weights. By

setting all weights, other than that for radius, to zero in (eq. 1), the individual contribution

to SPSE can be seen in Table 4 and Table 5.

30

Table 4. POINT MATCH USING BOUNDING SHAPES WITH GAZE

Shape Detected

Circle Square Triangle

S
h
ap

e
D

ra
w

n
 Circle 7.04515 5.275 5.04847

Square 5.15393 5.19377 3.58795

Triangle 4.67693 3.45145 5.82683

Table 5. POINT MATCH USING BOUNDING SHAPES WITH MOUSE

Shape Detected

Circle Square Triangle

S
h
ap

e
D

ra
w

n
 Circle 7.87036 5.88343 2.19373

Square 0.573813 7.10807 1.72813

Triangle 0.35031 2.99144 6.71473

The results for the mouse input compared to the gaze-based input are interesting

as they do not have the same patterns. One large weakness of the best-fit radius algorithm

is the false detection of circles when squares are intended. This can be seen in Table 4.

The reason for this is due to the increased roughness of the shape when using gaze

compared to the smooth strokes of using a mouse. This roughness causes the values to be

outside of the bounding shapes, which is what is used to check to see if the data is

compliant to the model. Although the accuracy is lower, this metric still accomplishes the

goal of finding the best-fit radius value.

31

ii. CORNER FINDING ALGORITHM:

 The next metric is the results from the corner-finding algorithm. The idea is to

match the number of corners detected with the corresponding shape (circle = 0, triangle =

3, square = 4). The weighted corner finder results (based on zero weights in (eq. 1) for

other metrics) can be seen in Table 6 and Table 7. One thing to notice is that there is a

large increase in the number of corners discovered in the gaze data compared to the

mouse data. This is due to the extra bumps and curves in the image drawn by the eye

being detected as corners. The maximum number of corners that the corner-finding

algorithm looks for can be set to different values; in these experiments, it was set to 8 and

only checked near expected corner locations. In the instance of a circle, the program

checked the whole shape for corners. This is a reason why the circle results are so high.

Table 6. CORNER DETECTION BY SHAPE WITH GAZE

Shape Detected

Circle Square Triangle

S
h
ap

e
D

ra
w

n
 Circle 1.95 0.7 0.75

Square 1.7 1.9 0.75

Triangle 1.65 0.6 1.9

32

Table 7. CORNER DETECTION BY SHAPE WITH MOUSE

Shape Detected

Circle Square Triangle

S
h
ap

e
D

ra
w

n
 Circle 1.0 0.1 0

Square .7 1.7 0.3

Triangle 0 0.5 1.1

iii. HOUGH METHODS:

 The next set of metrics are based on the Hough transform and the approximations

of the Hough transforms that were previously derived. By using the Hough transform

each shape had unique properties that were separated into different calculable results

contributing to the overall SPSE score.

a. AREA OF HOUGH TRANSFORM METRIC:

The first Hough-based metric is the difference in the area compared to the area

found for a perfect shape with equal radius. In other words, it is the basic integral under

the curve in Fig. 8. This area is subtracted from the perfect shape area. All weights except

that for the area are set to zero in (eq. 1), and the results are seen in Table 8 and Table 9.

Something worth noting is that the area for a circle shape and a square shape are nearly

identical, but this is not the case for the triangle (although poorly drawn circles can be

mistaken for triangles). This can be seen in the triangle drawn shape in Table 8 as the

circle was incorrectly chosen by the program. Otherwise, the numbers are as expected for

both the mouse and the gaze-based trials.

33

Table 8. AREA OF HOUGH TRANSFORM- GAZE CASE

Shape Detected

Circle Square Triangle

S
h
ap

e
D

ra
w

n
 Circle 2.547442 1.903898 1.419948

Square 1.536639 2.485485 1.695392

Triangle 3.183223 0.440902 2.513845

Table 9. AREA OF HOUGH TRANSFORM- MOUSE CASE

Shape Detected

Circle Square Triangle

S
h
ap

e
D

ra
w

n
 Circle 2.958929 0.947028 2.456028

Square 1.999308 2.422011 1.421321

Triangle 0.84204 2.646811 2.777951

b. MEAN OF HOUGH TRANSFORM METRIC:

The second metric for Hough-based shape detection is finding the mean of the

first one-third of the Hough histogram. In the first third of the data, the mean tells quite a

lot about what shape has been drawn (see Figure 10). However, one weakness is that the

average value of square and circle are again very close to each other, but triangles are

quite distinguishable, as seen in Table 10 and Table 11. In both the mouse and the gaze-

based cases, the triangle stands out easily.

34

Table 10. MEAN OF FIRST ONE-THIRD OF HOUGH TRANSFORM-GAZE CASE

Shape Detected

Circle Square Triangle

S
h
ap

e
D

ra
w

n
 Circle 2.626377 3.770403 0.647659

Square 1.571241 3.828741 1.244637

Triangle 0.835423 2.005884 3.846952

Table 11. MEAN OF FIRST ONE-THIRD OF HOUGH TRANSFORM-MOUSE CASE

Shape Detected

Circle Square Triangle

S
h
ap

e
D

ra
w

n
 Circle 4.185824 3.09798 0.237311

Square 2.279997 4.253781 0.619156

Triangle 0.684837 2.134503 4.240643

c. SLOPE OF HOUGH TRANSFORM METRIC:

The third metric is the slope evaluated from the beginning of the Hough transform

data to the peak in the data, as shown in Figure 11. The peak location varies by shape but

represents a characteristic radius similar to an inscribed circle. The peak value was

calculated using an averaging window with 5 data points immediately preceding the

highest matrix intensity value (eq. 3). These values are used to determine the difference

between square results and circle results. Square and triangle have similar slopes and

should appear to have similar numbers if the variance of the data is not too high. Slopes

35

were compared using (eq. 1) with all weights other than for slope equal to zero, yielding

Table 12 and Table 13. The circle’s variance continued to be a problem as it affected the

results for both circle and square readings. Otherwise, the data are still fairly comparable

and show correct results for square and triangle.

Figure 11. Example of Slope and Peak Location for Square

Table 12. SLOPE OF HOUGH TRANSFORM -GAZE CASE

Shape Detected

Circle Square Triangle

S
h
ap

e
D

ra
w

n
 Circle 1.437732 2.24371 0.7518

Square 0.965202 2.138216 1.319481

Triangle 0.387915 1.862779 2.239229

36

Table 13. SLOPE OF HOUGH TRANFORM- MOUSE CASE

Shape Detected

Circle Square Triangle

S
h
ap

e
D

ra
w

n
 Circle 2.778436 2.617368 0.045264

Square 2.368715 2.578591 0.158205

Triangle 0.699052 1.2077 2.497919

d. MEDIAN OF HOUGH TRANSFORM METRIC:

 The fourth metric is slightly different from the other metrics. This metric is based

on the median Hough data value. The median always follows an average trend where the

triangle has the smallest median, the circle has the middle median, and finally, the square

has the largest median. The corresponding data are shown in Table 14 and Table 15.

Although the median value is slightly different when comparing gaze to mouse-based

input, the trend is the same.

Table 14. MEDIAN OF HOUGH TRANSFORM-GAZE CASE

Circle Results 478

Square Results 816.9

Triangle Results 261.5

Table 15. MEDIAN OF HOUGH TRANSFORM-MOUSE CASE

Circle Results 251.1

Square Results 836.9

Triangle Results 58.3

37

iv. RESULTS SUMMARY:

 All of these weighted metrics from the Hough transform data (slope, median,

area, mean) are added to the data returned by the other subroutines (percentage of points,

corners) to determine the detected shape. The final results can be seen comparing gaze to

mouse data in Table 2 and Table 3. The average values for all of the test trials showed

that the SPSE values showed the correct shape on average. In fact, all cases gave the

correct shape according to the SPSE. To ensure no false positives, the program can be set

to not find a result for anything less than a threshold value of SPSE; for example, in

Table 2 the value could be set to 15 based on the second highest SPSE score.

v. HUMAN TESTING:

To improve the robustness of the algorithms, human testing was needed. The next

improvement was the inclusion of a GUI for the user to interface with, shown in Figure

12. The entire algorithm was implemented in the ShapeRecogn() function, only requiring

x and y coordinate vectors and a center position to calculate the shape and SPSE scores to

output to the user. This advancement allows for the broader application of the shape

recognition software.

38

Figure 12. User Interface

The interface seen in Figure 12, is part of an ongoing study intended to obtain

pilot data, determine potential problems, gauge the robustness of the program, and have

the ability to tune the system to future users by establishing common features. These

common features would include the speed the user draws each shape, the amount of

wavering around lines, amount of saccades, and many other features. Data was collected

under an IRB-approved protocol with informed consent of the participants.

Participants were asked to sit in a chair and look at a computer screen. They were

then asked to "draw" a few test shapes (circle, square, triangle) using their eyes, so they

became familiar with the task and software. Once familiar with the system, each

participant was asked to draw a total of 30 shapes (10 each of the three types of shape, in

random order). The gaze coordinate vectors were recorded and saved in text files. The

participants were then asked to complete a survey consisting of questions asking if they

39

encountered any discomfort, how easy it was to draw shapes, if their eyes became dry,

how well they felt the system identified their intended shapes, and any pros and cons of

usability.

The preliminary SPSE results, as seen in Table 16 for the first six users, along

with the subjective user feedback, will help make future improvements to tune the shape

recognition system. The preliminary results show that on average the correct shape is

being drawn even by inexperienced users. It is worth noting that the SPSE scores are

lower than those in Table 2 and Table 3. This is due to some inexperience, the system not

being individually tuned to their preferred settings, and other potential issues discussed

later.

Table 16. SHAPE DETECTION FINAL RESULTS USING EYE GAZE.

Shape Detected

Circle Square Triangle

S
h
ap

e
D

ra
w

n
 Circle 15.5720 11.3761 7.6389

Square 11.8692 14.0893 8.79702

Triangle 8.86922 10.8502 14.1145

Although further testing is needed to fully understand the results, the current user

base information provides insight on potential correlations (see Table 17).

40

Table 17. USER BASE STATISTICS

Question Units Result

Discomfort? % Yes 80

Easy to draw

shapes?

Scale

(1-5) 3.533333

Eyes become dry? % Yes 100

Correct

Identification?

Scale

(1-5) 3.8

The most common problem is an issue with eyes becoming dry. This occurred

around shape 20 of 30 for most users. The user was allowed to take a small break if they

wanted but only one user ever did. All notes on discomfort were from dryness in the eyes.

Currently, no users with vision or mobility disabilities have tested the system. The most

common suggestion was that when the shapes intersected on the GUI, their eyes would

wander on the wrong shape for a while before correcting. Another helpful suggestion

from multiple users was to change the background GUI to be a different color other than

white, for example black, to decrease the brightness on the eyes, which in turn would

decrease eye dryness. The last common complaint or suggestion was users’ perception

that the program smoothed the corners of the shapes. This is a side effect of the filtering

and the time spent looking at each corner. This should not be an issue in processing, but it

may have caused some user dissatisfaction.

41

vi. TESTING WITH NAO ROBOT:

The ShapeRecogn() program was used to control a NAO robot; (Figure 13). The

robot was given a list of shape-based commands representative of a command sub-menu;

this can be seen in Figure 13. Three healthy subjects were asked to draw 30 shapes, 10

for circle, square, and triangle respectively. Each shape then triggered the NAO’s action.

The percentage of correct shapes that were detected for the three test subjects were 90%,

97%, and 100%, for circle, square, and triangle respectively. This was without changing

values in the settings.ini file to help further improve the percentages (tuning the algorithm

for the specific users). These results demonstrate that the NAO is responsive to the

program output and performs the intended function.

Figure 13. The NAO robot is responding to gaze-based commands

vii. TESTING WITH LOCATION DEPENDENT COMMANDS:

To demonstrate the idea of controlling robot navigation, seen in Figure 14, using

shape-based commands, a grid was created within which a robot can navigate. The grid,

as seen in Figure 14, had four sections labeled A, B, C, and H for home. The user was

42

given three options for travel to locations (A Circle, B Square, C Triangle), using the

interface from Figure 12. The robot then moved to the designated location. Once at this

location, it gave the user three options for turning on LEDs (Blue Circle, Red Square,

Yellow Triangle). The robot has now completed its task and returns to the center location,

ready for a new command. Performance was judged by the robot navigating to the correct

zone 10 times using only commands given with eye gaze patterns. One mistake occurred

where the wrong shape was detected, the right shape was then drawn and the robot

moved to the correct location.

Figure 14. Robot at Position A

43

Figure 15. Robot with 3 LEDs

Although the demonstration is quite simple and lacks complexities such as

obstacle avoidance, the relevant applications can be quite varied. For example, location A

could represent a kitchen and each LED a command, perhaps to retrieve pills, water, or

turn off the stove. The robot then returns after completion of the task and the user can

issue a new command. The state dependency refers to a physical location in this example

but could be states of time, temperature, or velocity.

44

CHAPTER FIVE: STOCHASTIC ANALYSIS

The shape solving algrorithm is fast and efficient but can still be improved. One

area of improvement would be to reduce the overall processing time. The size of the

Hough matrix lends itself to being the most time intestive part due to processing. The

current method is to process all of the Hough transform matrices to get the intensity data

that can then be compared to the new data intensity. The comparison looks at the slope,

mean value, median value, and area under the curve to produce a score. All of these

calculations create more processing time that the possibly disabled user has to wait as

their gaze vectors are being calculated; this is due to the different requirements in

processing based on the resulting drawn image size. The objective of this data modeling

will be to create a dynamic model against which new gaze vector data can be compared

to see if it fits the shape model. Potential challenges include different locations of shape

start and end points, outliers where the eye traveled to a new point quickly, and different

size of the shapes being drawn. An ARMA (Auto Regressive Mean Average) model can

be made to represent different parameters of the eye and the eye gaze data. These models

will be constructed for all the Hough transform models and the original x and y shape

data. This will not only provide greater insight on how the eye is tracing shapes but be

able to predict what shape is being drawn without excessive processing.

ARMA models can be found by using methods of Data Dependent Systems

(DDS). A DDS methodology begins with knowledge and data collected from a system, in

this case gaze coordinate vectors. From the observed data the development of statistically

adequate models can be started without full knowledge of all system parameters. From

45

this data alone forecasting gaze coordinates is possible [60]. The method of DDS can

provide a differential equation that governs the system [61] and can provide information

on the things such as the frequency of saccades or other factors that affect eyes

movement. The DDS approach uses least-squares techniques to fit a series of difference

equations until a statistically adequate model is achieved; this is the basis of the ARMA

model. The modeling is of the form [61]:

𝑥𝑡 − 𝜙1𝑥𝑡−1 − 𝜙2𝑥𝑡−2. . . −𝜙𝑛𝑥𝑡−𝑛 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 … 𝜃𝑛−1𝑎𝑡−𝑛+1 (4)

𝑥̅ =
∑ 𝑥̇𝑡

𝑁
 (5)

𝑥𝑡 = 𝑥̇𝑡 − 𝑥̅ (6)

where 𝑥𝑡 are the data responses at a certain time, and 𝑎𝑡 is the associated white noise. 𝜙𝑖

is the auto regressive coefficient of lag i, and 𝜃𝑗 is the moving average coefficient of lag j

[62]. N is the number of samples. In other words N is the number of gaze coordinates,

and 𝜙𝑖 and 𝜃𝑗 represent the linearity of the gaze coordinate values over time. This

information will be beneficial in path prediction as it can predict where the eyes will be

several points ahead, allowing for faster processing potential. The model can also provide

a non-biased dual verification method as to what shape was drawn and where the shape

was started.

 The first data set will be strictly the x coordinates gathered by the GP3 that

correlate to the circle shape. This vector will be substitued into the equations for a DDS

and evaluated at different ARMA models until a minimum Residual Sum of Squares

46

(RSS) is found. The different ARMA models will start small, such as ARMA(1,1) which

represents only one autoregressive part (𝜙) and one mean average part (θ), and increase

until the F-test is satisfied. It should be noted that a higher order model may be required

dependent on shape of the data. For more explanation of the equations or of the process

see Appendix 1.

Using the rules of the F test, Table 18 was created.

Table 18. F-Test of Differnt ARMA Models

Order RSS #UAC>3 F0<>Fcrit

0,0 4295584 105

1,0 5832.615 24 361854.5054>3.8604

2,1 4622.992 4 42.6495>2.6231

4,3 4554.955 3 1.8111<2.3903

6,5 4480.427 3 1.9132<1.9576

The model of interest is the ARMA(2,1) model. This was chosen due to the

ARMA (4,3) model showing not much improvement in the reduction of errors proven

with the F test (1.8111<2.3903). The model being an ARMA(2,1) means we will have

two 𝜙 and one θ. These values are found by iterating until RSS is as small as statistically

possible. Note that the unified autocorrelation (UAC) is not 0, meaning that there is

correlation among the residuals.

47

After finding the parameters of the equation the values are 𝜙1 = 1.4518, 𝜙2 =

−.4528 and 𝜃1 = 3.2289 ∗ 10−5. Looking at a ARMA(2,1) model that appears in this

form:

𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 ARMA(2,1)

Substituting the values from the equations for gaze vectors in X:

𝑥𝑡 = 1.4518𝑥𝑡−1 − .4528𝑥𝑡−2 + 𝑎𝑡 − 3.2289 ∗ 10−5𝑎𝑡−1

We can use this model to estimate many parameters that will be helpful in

forecasting and analysis. Figure 16 and Figure 17 were also made to help better explain

the different parameters.

48

Figure 16: ARMA (2,1) Model Circle X Coordinate

49

Figure 17: ARMA (2,1) Model Circle X Coordinate Future Predictions

Because we are looking at ARMA(2,1) models for this model we can use the

explicit equation for the Green’s functions. The equations are given below (Eqs. 7-9), but

can be received through most DDS software, as seen in Figure 17.

𝐺𝑗 = 𝑔1𝜆1
𝑗

+ 𝑔2𝜆2
𝑗
 for real 𝜆1 and 𝜆2 (7)

𝑔1 =
𝜆1−𝜃1

𝜆1−𝜆2
, 𝑔2 =

𝜆2−𝜃1

𝜆2−𝜆1
 (8)

𝜆1, 𝜆2 =
1

2
(𝜙1 +/−√𝜙1

2 + 4𝜙2) (9)

50

Knowing the values of 𝜆 allow for the user to see if the system is stable, unstable, or

asymptotically stable following these conditions.

Table 19. Stability Conditions

|𝜆1|<1 And |𝜆2| < 1 Asymptotically Stable

|𝜆1|>1 And/Or |𝜆2| > 1 UNSTABLE

|𝜆1|=1 And |𝜆2| < 1 STABLE

𝜆1=1 And 𝜆2 = −1 STABLE

In this first case 𝜆1 = .9983, 𝜆2 = .4535 this condition means that the system will be

asymptotically stable. 𝜃1 is equal to 3.2289 ∗ 10−5 which is very close to zero allowing

some simplifications.

𝑔1 =
.9983−3.2289∗10−5

.9983−.4535
= 1.8324, 𝑔2 =

.4535−3.2289∗10−5

.4535−.9983
= −.8324

𝐺𝑗 = 1.8324(.9983)𝑗 − .8324(.4535)𝑗

It can be seen in Figure 17 that the Green’s function is very slowly approaching 0.

This is mostly due to the fact that the equation is subtracting from itself at almost the

same rate that it is adding. When j=10000 we achieve a point at 7.5 ∗ 10−8, and when

j=1000 we achieve a point at .33. This means that the system has a very strong memory.

In other words the effects from previous data strongly affect the future system values as

well; this is not necessarily bad as it depends on how you are expecting your values to

change. Since the x coordinate could change at any time to a new position quickly it

51

helps smooth the data, but if the data keeps moving unexpectedly it may be a bad fit for

the current model. This would be due to the values not responding fast enough to the

current model. This can be seen when forecasting.

i. FORECASTING:

With the ARMA(2,1) model can now forecast values for the system. Forecasted

values could be utilized in the system to predict the next few points of where a user was

drawing with their eyes. These predicted points could be compared with the real points

and the longer processing tasks could be started early if the beginning of a vector was

following the forecasts for a certain shape. The basics of forecasting an ARMA(2,1)

model as follows.

𝑥̂𝑡(1) = 𝐸𝑡[𝑥𝑡+1]

𝑥̂𝑡(1) = 𝐸𝑡[𝜙1𝑥𝑡 + 𝜙2𝑥𝑡−1 + 𝑎𝑡+1 − 𝜃1𝑎𝑡]

𝑥̂𝑡(1) = 𝜙1𝑥𝑡 + 𝜙2𝑥𝑡−1 − 𝜃1𝑎𝑡

𝑥̂𝑡(2) = 𝐸𝑡[𝜙1𝑥𝑡+1 + 𝜙2𝑥𝑡 + 𝑎𝑡+2 − 𝜃1𝑎𝑡+1]

𝑥̂𝑡(2) = 𝜙1𝑥̂𝑡(1) + 𝜙2𝑥𝑡

𝑥̂𝑡(3) = 𝐸𝑡[𝜙1𝑥𝑡+2 + 𝜙2𝑥𝑡+1 + 𝑎𝑡+3 − 𝜃1𝑎𝑡+2]

𝑥̂𝑡(3) = 𝜙1𝑥̂𝑡(2) + 𝜙2𝑥̂𝑡(1)

Any values past 𝑙 ≥ 3 steps ahead that will be

𝑥̂𝑡(𝑙) = 𝜙1𝑥̂𝑡(𝑙 − 1) + 𝜙2𝑥̂𝑡(𝑙 − 2) for 𝑙 ≥ 3

52

So taking the model

𝑥𝑡 = 1.4518𝑥𝑡−1 − .4528𝑥𝑡−2 + 𝑎𝑡 − 3.2289 ∗ 10−5𝑎𝑡−1

and looking one step ahead

𝑥̂𝑡(1) = 1.4518𝑥𝑡 − .4528𝑥𝑡−1 − 3.2289 ∗ 10−5𝑎𝑡

One can look at a data point near the start of the data series to simulate a computer

guessing the next point. We are going to be le looking at 𝑥50 = −78.8276, 𝑥49 =

−78.8276, 𝑎50 = −.0730 and evaluating success after looking 4 steps ahead.

𝑥̂50(1) = 𝜙1𝑥50 + 𝜙2𝑥49 − 𝜃1𝑎50

𝑥̂50(1) = 1.4518(−78.827) − .4528(−78.827) − 3.228 ∗ 10−5(−.073) = −78.7488

𝑥̂50(2) = 𝜙1𝑥̂50(1) + 𝜙2𝑥50 = 1.4518(−78.7488) − .4528(−78.8276) = −78.6344

𝑥̂50(3) = 𝜙1𝑥̂50(2) + 𝜙2𝑥̂50(1) = 1.4518(−78.634) − .4528(−78.748) = −78.5040

𝑥̂50(4) = 𝜙1𝑥̂50(3) + 𝜙2𝑥̂50(2) = 1.4518(−78.504) − .4528(−78.634) = −78.3665

53

Table 20: Summary of Predicted Points

 Forecast Real Percent Difference (%)

𝑥̂50(1) -78.7488 𝑥51 -79.8276 1.360588714

𝑥̂50(2) -78.6344 𝑥52 -79.8276 1.505958919

𝑥̂50(3) -78.504 𝑥53 -80.8276 2.916667388

𝑥̂50(4) -78.3665 𝑥54 -80.8276 3.091931699

The forecasted and real values are surprisingly very close, only being off by

1.3605% for the one step ahead, and 3.09% off for the 4 steps ahead. The error could be

further reduced by updating the forecast with the new known values using the Green’s

function. If we look back at the graph for 𝑋𝑝 DDS shows the prediction of points with

fairly large error bars. The prediction points are estimated at the end of the data series

with errors growing the farther from the predicted point. This prediction is not as useful

as the data of interest is within the data set and anything after should not be contributing

to shape drawing aspects.

54

ii. FREQUENCY, DAMPING RATIO, POWER (VARIANCE) CONTRIBUTION:

Table 21. Frequency, Dampening Ratio, and Power Parameters

λ 0.9983 0.4535

n 2.6646*10^-4 0.1258

P 0.6943 1.5284

d 9.4697*10^3 -18.1036

ζ 1 1

The parameters of the eye gaze coordinate vectors are similar to a spring-damper

system (Table 21); (see Appendix 1). The value of 𝜁 being equal to one represents a

critically damped system. The frequency may show the eye doing saccades over a portion

of the shape outline it is tracing. In this case the system is fairly quick reacting, with a

small frequency, and a critically damped system. It should be noted that the values of 𝑑1

and 𝑑2 give us insight on the variance. There is a very large power contribution in 𝑑1

with a value equal to 9.4697 ∗ 103; this is not preferred as it represents that our variance

is correlated with the system. This could be potentially lower with higher-order models.

55

iii. DISCUSSION:

The explanation of the DDS method in this thesis looked at the x gaze coordinate

data of a circle, other shapes can be found in Appendix 1. We fitted an ARMA(2,1)

model to the system but higher order models could have been used to help reduce some

of the errors and make a more compliant model. The model allows data collected just

from the x gaze coordinate values to predict the starting point for an x/y system and

therefore predict the shape without knowledge of the other vectors. The frequencies of

the system do not match the sampling frequency, meaning that we are sampling at high

enough rates to see effects of unknown frequencies. Theses frequencies may be from the

twitching of the user’s eyes or from some other unknown effect. High-order models may

first need to be run to see what the frequencies represent. The Green’s function also

leaves room for improvement, as it is slow to reach 0. A more ideal system would have a

quicker response with the Green’s function. Another advantage of the system is the

ability to predict a point midway into the data set. This can be implemented by processing

a collected data point while the system is still collecting data and then comparing the

future value to the predicted value to see which model it fits. Although the discussion for

this thesis is mostly based on the circle x coordinates the other parameters were looked at

as well, please see Appendix 1 for further discussion and processes on this data. The

Hough Transform was looked at as well and is summarized below with ARMA(4,3)

models; this discussion can be seen in Appendix 1 as well.

56

Summarizing all Shapes:

Circle:

𝑥𝑡 = 1.4518𝑥𝑡−1 − .4528𝑥𝑡−2 + 𝑎𝑡 − 3.2289 ∗ 10−5𝑎𝑡−1 X

𝑥𝑡 = 1.4280𝑥𝑡−1 − .4299𝑥𝑡−2 + 𝑎𝑡 − .0346𝑎𝑡−1 Y

Square:

𝑥𝑡 = 1.4605𝑥𝑡−1 − .4616𝑥𝑡−2 + 𝑎𝑡 + .0264𝑎𝑡−1 X

𝑥𝑡 = 1.3803𝑥𝑡−1 − .3818𝑥𝑡−2 + 𝑎𝑡 − .0627𝑎𝑡−1 Y

Triangle:

𝑥𝑡 = 1.4971𝑥𝑡−1 − .4977 𝑥𝑡−2 + 𝑎𝑡 − .0180𝑎𝑡−1 X

𝑥𝑡 = 1.6836𝑥𝑡−1 − .6840 𝑥𝑡−2 + 𝑎𝑡 − .2779𝑎𝑡−1 Y

Summarized Hough Transform Results:

Circle:

𝑥𝑡 = .9378 𝑥𝑡−1 − .0512𝑥𝑡−2 + .0208 𝑥𝑡−3 − .0055𝑥𝑡−4 + 𝑎𝑡 + 1.0223𝑎𝑡−1

+ .6001𝑎𝑡−2 − 2.6224 ∗ 10−6𝑎𝑡−3

Square:

𝑥𝑡 = 1.4977 𝑥𝑡−1 − .8875𝑥𝑡−2 + .6115𝑥𝑡−3 − .2867 𝑥𝑡−4 + 𝑎𝑡 − .0063 𝑎𝑡−1 + 1.9988

∗ 10−5𝑎𝑡−2 − 8.6367 ∗ 10−9𝑎𝑡−3

57

Triangle:

𝑥𝑡 = .2432𝑥𝑡−1 + .6255 𝑥𝑡−2 + .1589𝑥𝑡−3 − .0380 𝑥𝑡−4 + 𝑎𝑡 + .5676 𝑎𝑡−1

+ .0815 𝑎𝑡−2 + 2.6194 ∗ 10−4𝑎𝑡−3

In summary, ARMA models were created for 3 shapes for both the x and y. The

Hough transforms had ARMA models created as well. They hide information that the

user can extract from using intuition on the system. This information could be the

saccades of the eye, or the frequency of the eye focusing on and off a point. The models

are also useful for real time forecasting. Using the developed models can help reduce the

amount of data that needs to be stored to represent these models, lending to faster

processing time. Although this thesis only touched on the surface of what is possible

using DDS, more can be done in future work.

58

CHAPTER SIX: EPISCLERAL VENOMANOMETER

i. INTRODUCTION:

The purpose of an episcleral venomanometer (Error! Reference source not

found.) is to draw information from the episcleral veins located in the eye. The episcleral

veins serve as collector channels for the outflow of aqueous humor and therefore an

increased pressure in the veins, which is correlated to an elevation of intraocular pressure

[63]. The episcleral venomanometer inflates a small air balloon, made from transparent

silicone rubber (General Electric RTV 615A), which makes contact with the surface of

the eye. The pressure is increased, affecting the air balloon, until the vessel becomes half

blanched. The half blanched point is when the color in the vein becomes pale; this is

slightly subjective (Figure 19, picture from source [63]). In Figure 19 the EV stands for

espicleral vien, the image on top is before the half blanched point and the image on the

bottom is when the half blanched point is reached. M is the meniscus of tear film and R is

the aiming ring associated with the surgical membrane. The pressure can be read from a

dial on the side of the device and is adjusted using an air sealed piston. The pressure

range can be accurately read between 5-30 mm Hg, with in vitro reproducibility at 2.4%

and in vitro intraobserver reproducibility at .7mm Hg for normal pressure [63].

59

Figure 18. Episcleral Venomanometer

Figure 19. Espiceral Venous Pressure Pictures

60

Episcleral venous pressure (EVP) can be a sign of many health related issues. A

high EVP may indicate glaucomatous damage. High EVP may also be a sign of brain

damage or concussions. A portable venomanometer would therefore be useful at sporting

events or on a battlefield. The goal of creating an improved episcleral venomanometer is

that it can be easily operated by one observer, require little to no calibration, be a

compact size, easy to mount, and provide good reproducibility. Current devices attach to

a slit lamp which is large and cumbersome. Another issue is getting consistent readings

between doctors for identification of the episcleral veins. The episcleral veins are

identified are vessels that are typically less mobile, deeper, and straighter than the

conjunctival vessels. This makes it easier to find the veins for the measurement.

ii. PROBLEM DESCRIPTION:

A problem with the current technique is that the observer may have repeatability

and reproducibility but the difference between two observers may be significant [64]. In a

clinical study the interobserver reproducibility test shows that the results of the two

observers may differ by 1.2 mm Hg and that overall on average one observer obtained

values that were .7 mm Hg higher [64]. The major issue with measuring EVP is that it

has an anatomic nature. Between observers they may select different blood vessels to

focus on which may create different readings. The reason this occurs is due to the higher

pressure to collapse superficial veins along with deep-seated vessels that are located near

the exiting of the sclera (see Figure 20).

61

Figure 20. Basic Anatomy of the Human Eye

The other issue is selecting the contact point between the EVP and the eye. This is

usually a personal choice, and most doctors choose when it is half blanching at the end

point. When you measure past the halfway point the measurements are prone to

variability and falsely elevated readings. In order to account for these issues a standard

should be set. For refrence look at the difficulty of finding the half blanched point in

Figure 19. This standard could be in the form of the exact color for the when the vessel

was blanched using methods of computer vision.

62

iii. SOLUTION:

a. ITERATION 1:

In order to overcome the challenges and requirements of getting consistent

readings; an Episcleral Venomanometer EV-310 was obtained from EyeTech. Under the

supervision of University of Nebraska Medical Center (UNMC) ophthalmology faculty

the device was retrofitted to allow improvements. These improvments were designed in a

way to record what measurments the doctor was using when the half blanched point was

reached, with the hope of being able to use recorded pressure and images for comparison

without the need for large machinery that affected previous recording methods.

The first improvement was the ability to capture images of the eye without

needing to use large and expensive equipment. In order to accomplish this goal a

Raspberry Pi Zero (Figure 21) was chosen for the computing in a Linux environment.

The Raspberry Pi Zero is a small board (65 mm x 30 mm x5 mm), which allows the

device to be mounted on the back of the Episcleral Venomanometer. The camera chosen

was the Raspberry Pi Camera Board v2 at 8 megapixels. This is a special type of camera

that allows direct communication with the Raspberry Pi, while also being quite small. It

is capable of 3280x2464 pixel static images and supports video at 1080p 30 fps, 720p 60

fps, and 640x480p and 90 fps.

63

Figure 21: Raspberry Pi Zero

The placement of the camera needed to be in line with the view through the

episcleral venomanometer; this obstructed the view point of the user. In order to account

for this a touchscreen was added to the back of the episcleral venomanometer to allow

live footage of what the camera is seeing. The chosen screen is the Adafruit PiTFT 2.8”

touchscreen display (Figure 22); this was chosen for its size and ability to directly

communicate with the Raspberry Pi over Serial Peripheral Interface (SPI). A nice feature

of this screen is that it allows communication through 4 push buttons and the resistive

touchscreen, meaning you don’t need a keyboard and mouse to communicate with the

device.

64

Figure 22: Adafruit PiTFT 2.8" Touchscreen

The add-ons to the device were made from 3D printed plastic and designed to fit

to the existing device through the attachment of only one bolt. This would allow for easy

assembly and would work on any existing devices without modification.

Originally the device was just configured to take photos that saved to system

memory. Also this version had a very large 10X zoom lens that allowed movement of

both the camera and lens; (Figure 23). The movement ended up being more than required

and the lens was too large in size and without sufficient zoom. Images, however, were

clear and the idea was a good proof of concept.

65

Figure 23. Iteration 1

66

b. ITERATION 2:

 The next iteration aimed to fix the movement of camera and lens to be concentric

and allow only small movements axially. To ensure these requirements a new 3D-printed

body was made. This new body attached very similarly to iteration 1 with the difference

of including some lips that allowed the device to be supported also from the front, Figure

24. This increased overall stability of the base. The electronics bay was also printed to be

removable and allow different electronics to be slid onto the back of the device, Figure

25. Easy attachment points were added for future attachments.

Figure 24: Lipped and Groove Back Plate

67

Figure 25: Electronics Bay

The zoom was increased to 25X, and a smaller lens was chosen. This version

suffered from problems with both lighting and focus of the camera. At this point the

camera was changed from taking pictures to taking video. This change required an

external USB drive to store video footage, along with heavy reworking of the

programming.

68

Figure 26: Iteration 2

In these changes a new feature was added, providing a digital readout of what

pressure the device was reading. This was done by making an attachment that mounted a

potentiometer with the axis of the pressure adjustment wheel, as seen in Figure 27.

Functiong like an encoder, when the potentiometer wheel turned, a small custom Arduino

read the potentiometer and then using serial communication, told the Raspberry Pi the

pressure value. The buttons on the touchscreen were set up to allow easy calibration of

the potentiometer to get accurate pressure readings each time. The buttons in order from

left to right mean exit program, set low pressure (0 mm Hg), set high pressure (30 mm

Hg), and record video.

69

Figure 27. Potentiometer Arm

Another improvement of this iteration was the inclusion of an adapter attachment

to a tripod. The stand was a camera tripod that had custom mounting to attach the device

via a loc-line tube. Loc-line tube is a plastic modular tube that can hold its shape and be

easily moved and configured into new positions, Figure 28. The idea for this tube was to

hold the device steady on the tripod while allowing the doctor to move the device into

position. The tubing, although powerful, was not strong enough at long lengths. To

reinforce the tubes, small bendable metal rods were inserted into the tube. Although this

fixed the issue with the tubes being too easily bent, it now made the tubes more difficult

to do fine alignment. Another setback was that the wires’ added weight created too much

moment on the tripod and would cause it to tip. The tripod also proved to be too large and

was often in the way during testing.

70

Figure 28: Loc-Line Tubing

The next issue was lighting. This was a consistent issue throughout the whole

project. Too much light would overexpose the camera and make all the images too white.

Another issue was that due to the contact of the eye with the inflated balloon and the

contact of the camera with the device, when the eye is pressed hard into the device all

light is blocked, making the image too dark to see. Through the various different

iterations the best lighting has been achieved using a diffused LED light at an angle of 45

to 60 degrees from the contact point with the eye. Due to the requirement that only one

person is conducting the measurements; this can create an awkward testing procedure

without a slit lamp, as the doctor would need to adjust the light and pressure while

keeping the device in place.

71

c. ITERATION 3:

The next iteration set out to fix some of the issues related to focus and zoom. To

address the zoom and focus a pocket microscope with adjustable focus and zoom was

purchased. The pocket microscope was a Carson MicroBrite led lighted 20X-40X zoom

pocket microscope that was of small form factor, Figure 29. The pocket microscope was

then mounted with the camera.

Figure 29. Carson MicroBrite Pocket Microsocpe

The issue with this version was that if the device was shifted off its intended

placement, the view through the microscope was in the wrong area, Figure 30. Lighting

was good and so was focus when it was in view, but it was hard to keep it consistently in

one place with the size of the image on screen. To solve this issue, digital zoom was

72

simulated by turning off portions of the camera sensor and expanding the resulting image

on the screen. This allowed a small improvement in frame-rate without a noticeable

difference in perceived quality.

Figure 30. Iteration 3

73

d. ITERATION 4:

This iteration focused on fixing the stand and keeping the microscope in one place

to allow for easier and more consistent viewing. The microscope was disassembled and

rebuilt in a custom 3D-printed housing that mounted directly to the frame of the device.

This meant that we were now always getting the same view. The stand was replaced with

a microphone stand, specifically the JamStands Mic Stand with round base, Figure 31.

The round base was chosen over the tripod style base due to tripping hazards and the

excess of room the tripod needed would make it difficult to put close to an operating

table. A 19” metal gooseneck was chosen to replace the loc-line to provide more stability,

Figure 31. The gooseneck advertises the ability to hold up to 2.5 lb at its end, after

weighing the device it came in at just 2.2 lb meaning the stand could support it. To

support the base of the microphone stand a 9 lb weight was added to the base. The weight

was needed more as reassurance to ensure the device not to tip over, even at extreme

angles.

74

Figure 31. JamStand and Gooseneck

 This version of the device also incorporated the features of “zoom” and all of the

software updates from previous versions while also including a side-mounted light to

allow for illumination of the eye. The focus and zoom mechanics were preserved from

iteration 3, but both were stiffened to not allow accidental turning of the wheels.

75

Figure 32. Iteration 4

 After testing of this iteration it was discovered that the most useful information is

taken from the 0X to around 12X zoom range. This meant that our current device was

zooming in too far and becoming blurry for the portions of the eye we wished to view as

we were doing around 20X-40X manual zoom with a small amount of “digital zoom” on

top of that. Also during testing the correct lighting was discovered to be along the

membrane balloon that touches the eye with a direct light source instead of a diffuse light

source. More parameters were also decided such as the need for the gooseneck to stop in

place after moving. The other critique was that the ball joint near the device allowed for

too much movement. The want for an autofocus was also expressed; this is difficult as the

76

PiCam being used is a fixed focus camera and display using H.264 video file streaming

techniques might not allow other cameras to be compatible.

77

e. ITERATION 5:

 The main goal of this iteration was to decide if a new camera was needed or if the

PiCam could be reworked to meet the standards set out. After researching compatible

cameras it was found that the majority of the compatible cameras were web cameras,

with a small subsection of some cameras being USB digital microscopes. Finding a

camera that allowed zoom that did not allow manual adjustment was unsuccessful with

the exception of a few products that were in the $300-400 range that had little to no

documentation of working with the Raspberry Pi. This lead to research on how the rest of

the webcams were handling zoom. A majority of the standard webcams were handling

the zoom optically with some using a software focus and others using hardware focus.

Another caveat of many of these cameras was that the maximum resolution was only 2

MP before using zoom. Knowing the other cameras were only going to be at 2

megapixels lead to the reconsideration of using the PiCam, which has a Sony IMX219 8

megapixel sensor, for its higher resolution.

 Using the original PiCam, the microscope and extra lens were removed. The

digital zoom was adjusted in software to allow a more customized zoom using the

following function (Eq. 10).

camera.crop(x,y,w,h) (10)

where x and y are the location of the start of a rectangle of width w and height h. All

parameters are between 0 and 1. To achieve true zoom Eq. 10 is modified and the

following formula is used.

78

camera.crop(z,z,1-2*z,1-2*z), where z is the percentage of zoom.

 This formula was used to get the camera zoom to be useful for the 0-12X zoom

that was required. A small shift in the x and y position was also implemented to focus on

a certain portion of the screen. The focus of the camera still being fixed needed to be at a

distance away to still allow the image to be in focus. The PiCam V2 has a lens of f=3.0

mm, f/2.0 with a field of view of 62.2 x 48.8 degrees. The full frame SLR lens equivalent

is 29 mm; [65]. The lens can be adjusted for better focus by carefully scrapping off the

glue that holds the threads of the lens and turning the lens assembly clockwise. This

allows focusing as close as 25 mm or .94252 inches with the side effect of becoming a

wide angle lens. This adjustment was not needed as simply moving the lens farther by a

few centimeters adjusted the focus enough to be adequate.

 Improvements were also done to the stand. The gooseneck was supported with

rubber heat shrink tubing. Also the stand height was shortened to allow easier access to a

patient on a table. To shorten the stand height the orginal microphone stand was cut with

a Dremel tool and then placed back together. Iteration 5 was successful and more simple

than other iterations; (see Figure 33 and Figure 34). Lighting was included via a flexiable

reading light.

79

Figure 33. Iteration 5

80

Figure 34. Iteration 5 Physical Model

81

CHAPTER SEVEN: CONCLUSIONS

i. CONCLUSION OF GAZE VECTOR SHAPE BASED RECOGNITION

In this thesis, the concept of gaze-based HRI was expanded to allow the inclusion

of shape-based command recognition. The experiments showed that the detection of

mouse-drawn shapes and eye gaze-drawn shapes were comparable. The method was

validated on a small humanoid robot with a set of shape-based commands, as well as on a

custom-built wheeled robot. Eye-based commands will prove to be beneficial in

interfacing with robots. This approach has many advantages over blink-based command

input. Blinks can be difficult to count and easily confused, whereas shapes are more

natural and can vary in size for the intensity of the command. This system is easily

accessible for disabled and elderly people who may lack the motor skills necessary to

control technology by other means. By combining the gaze-based shape method with

blinks for program indicators, the amount of commands and interactions grow to provide

greater command options and independence for the user. Another option for adding more

commands is the location of the starting corner of a shape. For a square that would allow

4 different starting locations, and with the addition of drawing clockwise or

counterclockwise with size differnces, allows for a wide variety of shape possibilities

from only a small amount of shape based patterns.

More users and results are being processed to allow a large database of user

shapes to be logged. From these logged results different techniques and specifications can

be tested on large populations of data. Machine learning or Taguchi method may be

82

implemented to determine the best tuning procedure. Future work will include testing

with impaired subjects, along with testing procedures to properly adjust weights in the

algorithm for each subject.

ii. CONCLUSION OF DESIGN OF AN IMPROVED EPISCLERAL

VENOMANOMETER:

 In conclusion the design of an improved episcleral venomanometer took many

iterations. The cross discipline project required direct interation between

ophthalmologist, researchers, and engineering. Although the parameters and requirements

changed and adapted as the project went on, further knowledge on what was required and

needed in a typical operation was gained. The final product is only a small fraction of the

cost of the full device, as seen in Table 22. For only $263.54 any episcleral

venomanometer can be easily improved to allow live recording of both pressure and what

the surgeon sees. When the device itself is already $950.00 and the alternatives require

large bulky machinery, this is a relative bargain. Assembly to the device is easy and only

required one existing screw to attach the electronics.

 The success of iteration 5 lead to the creation of an identical device for further

subject testing. New footage will be recorded and there is the possibility to have greater

accuracy and understanding of the episcleral pressure with the video recordings.

83

Table 22. Bill of Materials for Venomanometer Iteration 5

84

ACKNOWLEDGEMENT:

I would like to thank my advisor Dr. Nelson. Dr. Nelson has shown time and time

again that he is committed to making, creating, and inspiring students to reach new

heights of academic excellence. He does this in all aspects of life, both in and out of the

classroom. He helped me do my best throughout my academic career. Through his help

we were able to submit a paper and present at the IEEE/ASME MESA 2016 conference

in Auckland, New Zealand. Much of the content from that paper made its way into my

thesis. These sort of opportunities and professional advancement were things that I would

not have been able to achieve without his expertise in both the field, and his continual

involvement in me as a student. I am so thankful for what he has contributed, and am

excited to see the greatness that he will continue to inspire in others.

I would also like to thank the NSF for the funding that went into the eye gaze

shape based recognition research, as well as the NRI funding and UNMC involvement in

the research and study of an improved Episcleral Venomanometer.

85

Works Cited

[1] M. Bollini, S. Tellex, T. Thompson, N. Roy and D. Rus, "Interpreting and Executing Recipes

with a Cooking Robot," In Experimental Robotics, pp. 481-495, 2013.

[2] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mosenlechner, D. Pangercic, T. Ruhr and M.

Tenorth, "Robotic Roommate Making Pancakes," 11th IEEE-RAS International Conference on

Humanoid Robots (Humanoids), pp. 529-536, 2011.

[3] S. Miller, J. V. D. Berg, M. Fritz, T. Darrell, K. Goldberg and P. Abbeel, "A Geometric

Approach to Robotic Laundry Folding," The International Journal of Robotics Research, vol.

32, no. 2, pp. 249-267, 2012.

[4] A. Ramisa, G. Alenya, F. Moreno-Noguer and C. Torras, "Using Depth and Appearance

Features for Informed Robot Grasping of Highly Wrinkled Clothes," IEEE International

Conference on Robotics and Automation (ICRA), pp. 1703-1708, 2012.

[5] M. Ciocarlie, K. Hsiao, A. Leeper and D. Gossow, "Mobile Manipulation through an Assistive

Home Robot," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pp. 5313-5320, 2012.

[6] H. Nguyen, A. Jain, C. Anderson and C. C. Kemp, "A Clickable World: Behavior Selection

through Pointing and Context for Mobile Manipulation," IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 787-793, 2008.

[7] C.-H. King, T. L. Chen, A. Jain and C. C. Kemp, "Towards an Assistive Robot that

Autonomously Performs Bed Baths for Patient Hygiene," IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 319-324, 2010.

[8] S. K. Banala, S. H. Kim, S. K. Agrawal and J. P. Scholz, "Robot Assisted Gait Training with

Active Leg Exoskeleton (ALEX)," IEEE Transactions on Neural Systems and Rehabilitation

Engineering, vol. 17, no. 1, pp. 2-8, 2009.

[9] P. Malcolm, W. Derave, S. Galle and D. D. Clercq, "A Simple Exoskeleton that Assists

Plantarflexion can Reduce the Metabolic Cost of Human Walking," PloS one, vol. 8, no. 2,

2013.

[10] R. Sparrow and L. Sparrow, "In the Hands of Machines? The Future of Aged Care," Minds

86

and Machines, vol. 16, no. 2, pp. 141-161, 2006.

[11] Y. S. Choi, "A Study of Human-Robot Interaction with an Assistive Robot to Help People with

Severe Motor Impairments," 2009.

[12] A. Jain and C. C. Kemp, "EL-E: An Assistive Mobile Manipulator that Autonomously Fetches

Objects from Flat Surfaces," Autonomous Robots, vol. 28, no. 1, pp. 45-64, 2010.

[13] L. P. Reis, R. A. Braga, M. Sousa and A. P. Moreira, "A Flexible Interface for an Intelligent

Wheelchair," Robot Soccer World Cup, pp. 296-307, 2009.

[14] Researchnester.com, "Mechanical Keyboard & Switch Market : Global Demand Analysis &

Opportunity Outlook 2023," ICT & Electronics, 1 Febuary 2017. [Online]. Available:

http://www.researchnester.com/reports/mechanical-keyboard-switch-market-global-

demand-analysis-opportunity-outlook-2023/190. [Accessed 6 June 2017].

[15] R. Mead and M. J. Mataric, "Toward Robot Adaptation of Human Speech and Gesture

Parameters in a Unified Framework of Proxemics and Multimodal Communication," IEEE

International Conference on Robotics and Automation (ICRA) Workshop on Machine

Learning for Social Robots, 2015.

[16] A. Aly and A. Tapus, "A Model for Synthesizing a Combined Verbal and Nonverbal Behavior

based on Personality Traits in Human-Robot Interaction," 8th ACM/IEEE International

Conference on Human-robot interaction, pp. 325-332, 2013.

[17] K. Anderson and P. W. McOwan, "A Real-Time Automated System for the Recognition of

Human Facial Expressions," IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), vol. 36, no. 1, pp. 96-105, 2006.

[18] J. Saldien, K. Goris, B. Vanderborght, J. Vanderfaeillie and D. Lefeber, "Expressing Emotions

with the Social Robot Probo," International Journal of Social Robotics , vol. 2, no. 4, pp. 277-

289, 2010.

[19] M. V. d. Bergh, D. Carton, R. D. Nijs, N. Mitsou, C. Landsiedel, K. Kuehnlenz, D. Wollherr, L.

V. Gool and M. Buss, "Real-Time 3D Hand Gesture Interaction with a Robot for

Understanding Directions from Humans," IEEE International Symposium on Robot and

Human Interactive Communication (RO-MAN), pp. 357-362, 2011.

[20] L. Sartori, C. Becchio and U. Castiello, "Cues to Intention: The Role of Movement

Information," Cognition, vol. 119, no. 2, pp. 242-252, 2011.

87

[21] P. K. Artemiadis and K. J. Kyriakopoulos, "EMG-based Control of a Robot Arm Using Low-

Dimensional Embeddings," IEEE Transactions on Robotics, vol. 26, no. 2, pp. 393-398, 2010.

[22] N. Bu, M. Okamoto and T. Tsuji, "A Hybrid Motion Classification Approach for EMG-based

Human–Robot Interfaces Using Bayesian and Neural Networks," IEEE Transactions on

Robotics, vol. 25, no. 3, pp. 502-511, 2009.

[23] L. Bi, X.-A. Fan and Y. Liu, "EEG-based Brain-Controlled Mobile Robots: A Survey," IEEE

Transactions on Human-Machine Systems, vol. 43, no. 2, pp. 161-176, 2013.

[24] F. Galan, M. Nuttin, W. Lew, P. W. Ferrez, G. Vanacker, J. Philips and J. D. R. Millan, "A

Brain-Actuated Wheelchair Asynchronous and Non-invasive Brain-Computer Interface for

Continuous Control of Robots," Clinical Neurophysiology, vol. 119, no. 9, pp. 2159-2169,

2008.

[25] marketsandmarkets.com, "Eye Tracking Market by Type (Mobile & Remote), by Application

(Medical Diagnostics, HCI, Research, & Virtual Reality), by Industry (Marketing, Healthcare,

Transportation, Communication & Entertainment) and by Geography - Global Trend &

Forecast to 2020," marketsandmarkets.com, November 2015. [Online]. Available:

http://www.marketsandmarkets.com/Market-Reports/eye-tracking-market-

144268378.html. [Accessed 6 June 2017].

[26] D. Cox and J. DiCarlo, "Device and Method for Tracking Eye Gaze Direction". United States

of America Patent 11/386.878.

[27] C. H. Morimoto and M. R. Mimica, "Eye Gaze Tracking Techniques for Interactive

Applications," Computer Vision and Image Understanding, vol. 98, no. 1, pp. 4-24, 2005.

[28] Z. Zhu and Q. Ji, "Eye and Gaze Tracking for Interactive Graphic Display," Machine Vision

and Application, vol. 15, pp. 139-148, 2004.

[29] K. R. Park, "A Real-Time Gaze Position Estimation Method based on a 3-D Eye Model," IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37, pp. 199-212,

2007.

[30] E. D. Guestrin and M. Eizenman, "General Theory of Remote Gaze Estimation Using the

Pupil Center and Corneal Reactions," IEEE Transactions on Biomedical Engineering, vol. 53,

pp. 1124-1133, 2007.

[31] R. Barea, L. Boquete, L. M. Bergasa, E. Lopez and M. Mazo, "Electro-Oculographic Guidance

of a Wheelchair Using Eye Movements Codification," The International Journal of Robotics

88

Research, vol. 22, no. 7-8, pp. 641-652, 2003.

[32] E. A. Hoffman and J. V. Haxby, "Distinct Representations of Eye Gaze and Identity in the

Distributed Human Neural System for Face Perception," Nature Neuroscience, vol. 3, no. 1,

pp. 80-84, 2000.

[33] N. J. Emery, "The Eye Have It: The Neuroethology, Function and Evolution of Social Gaze,"

Neuroscience & Biobehavioral Reviews, vol. 24, no. 6, pp. 581-604, 2000.

[34] K. K. Kampe, C. D. Frith, R. J. Dolan and U. Frith, "Psychology: Reward Value of

Attractiveness and Gaze," Nature, vol. 413, no. 6856, pp. 589-589, 2001.

[35] B. Fink and I. Penton-Voak, "Evolutionary Psychology of Facial Attractiveness," Current

Directions in Psychological Science, vol. 11, no. 5, pp. 154-158, 2001.

[36] R. Jacob and K. S. Kam, "Eye Tracking in Human-Computer Interaction and Usability

Research: Ready to Deliver the Promises," Mind, vol. 2, no. 3, p. 4, 2003.

[37] J. H. Goldberg and X. P. Kotval, "Computer Interface Evaluation using Eye Movements:

Methods and Constructs," International Journal of Industrial Ergonomics, vol. 24, no. 6, pp.

631-645, 1999.

[38] T. W. Victor, J. L. Harbluk and J. A. Engstrom, "Sensitivity of Eye-Movement Measures to in-

Vehicle Task Difficulty," Transportation Research Part F: Traffic Psychology and Behaviour,

vol. 8, no. 2, pp. 167-190, 2005.

[39] N. B. Sarter, R. J. Mumaw and C. D. Wickens, "Pilots’ Monitoring Strategies and

Performance on Automated Flight Decks: An Empirical Study Combining Behavioral and

Eye-Tracking Data," Human Factors: The Journal of the Human Factors and Ergonomics

Society, vol. 49, no. 3, pp. 347-457, 2007.

[40] C. S. Lin, C. Ho, W. Chen, C. Chiu and M. Yeh, "Powered Wheelchair Controlled by Eye-

Tracking System," Optica Applicata, vol. 36, no. 2-3, p. 401, 2006.

[41] P. S. Gajwani and S. A. Chhabria, "Eye Motion Tracking for Wheelchair Control,"

International Journal of Information Technology, vol. 2, pp. 185-187, 2006.

[42] J. Ma, Y. Zhang, A. C. A and F. Matsuno, "A Novel EOG/EEG Hybrid Human-Machine

Interface Adopting Eye Movements and ERPS: Application to Robot Control," IEEE

Transactions on Biomedical Engineering, vol. 62, no. 3, pp. 876-889, 2015.

89

[43] B. H. Kim, M. Kim and S. Jo, "Quadcopter Fight Control Using a Low-Cost Hybrid Interface

with EEG-based Classification and Eye Tracking," Computers in Biology and Medicine, vol.

51, pp. 85-92, 2014.

[44] C. Staub, S. Can, B. Jensen, A. Knoll and S. Kohlbecher, "Human-Computer Interfaces for

Interaction with Surgical Tools in Robotic Surgery," 4th IEEE RAS & EMBS International

Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 81-86, 2012.

[45] N. P. Noonan, G. P. Mylonas, J. Shang, C. J. Payne, A. Darzi and G. Z. Yang, "Gaze Contingent

Control for an Articulated Mechatronic Laparoscope," 3rd IEEE RAS and EMBS International

Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 759-764, 2010.

[46] X. Zhang, S. Li, J. Zhang and H. Williams, "Gaze Contingent Control for a Robotic

Laparoscope Holder," Journal of Medical Devices, vol. 7, no. 2, p. 020915.

[47] S. Li, J. Zhang, L. Xue, F. J. Kim and X. Zhang, "Attention-Aware Robotic Laparoscope for

Human-Robot Cooperative Surgery," IEEE International Conference on Robotics and

Biomimetics (ROBIO), pp. 792-797, 2013.

[48] S. Li, X. Zhang, F. J. Kim, R. D. d. Silva, D. Gustafson and W. R. Molina, "Attention-Aware

Robotic Laparoscope based on Fuzzy Interpretation of Eye-Gaze Patterns," Journal of

Medical Devices, vol. 9, no. 4, p. 041007, 2015.

[49] C. A. Nelson, X. Zhang, J. Webb and S. Li, "Fuzzy Control for Gaze-Guided Personal

Assistance Robots: Simulation and Experimental Application," International Journal on

Advances in Intelligent Systems, vol. 8, no. 1-2, pp. 77-84, 2015.

[50] D. Puanhvuan and Y. Wongsawat, "Semi-automatic P300-based brain-controlled

wheelchair," ICME International Conference on Complex Medical Engineering (CME), Kobe,

Japan, pp. 455-460, 2012.

[51] P. P. Caffier, U. Erdmann and P. Ullsperger, "Experimental evaluation of eye-blink

parameters as a drowsiness measure," European Journal of Applied Physiology, vol. 89, no.

3-4, pp. 319-325, 2003.

[52] G. Cardona and N. Quevedo, "Blinking and driving: the influence of saccades and cognitive

workload," Current Eyes Research, vol. 39, no. 3, pp. 239-244, 2014.

[53] K. Grauman, M. Betke, J. Gips and G. R. Bradski, "Communication via eye blinks - detection

and duration analysis in real time," IEEE Computer Society Conference on Computer Vision

90

and Pattern Recognition (CVPR), vol. 1, pp. 1010-1017, 2001.

[54] "Gazepoint GP3 Eye Tracker- Gazepoint," Gazepoint, [Online]. Available:

http://www.gazept.com/product/gazepoint-gp3-eye-tracker/. [Accessed 6 April 2016].

[55] B. Li, B. Mettler and J. Andersh, "Classification of Human Gaze in Spatial Guidance and

Control," IEEE International Conference on Systems, Man, and Cybernetics (SMC) in

Kowloon, China, pp. 1073-1080, 2015.

[56] "Find out more about NAO," Aldebaran Robotics, [Online]. Available:

https://www.aldebaran.com/en/cool-robots/nao/find-out-more-about-nao. [Accessed 4

April 2016].

[57] "Recognizing objects — NAO Software 1.14.5 documentation," Aldebaran Robotics,

[Online]. Available: http://doc.aldebaran.com/1-

14/software/choregraphe/tutos/recognize_objects.html. [Accessed 4 April 2016].

[58] C. Harris and M. Stephens, "A combined corner and edge detector," Alvery Vision

Conference, vol. 15, p. 50, 1988.

[59] J. Illingworth and J. Kittler, "A survey of the Hough transform," Computer Vision Graphics

Image Process, vol. 44, no. 1, pp. 87-116, 1988.

[60] S. M. Pandit and K. P. Rajurkar, "Data-Dependent Systems Approach to Solar Energy

Simulation Inputs," Journal of Solar Energy Engineering, vol. 105, pp. 461-463, 1983.

[61] K. P. Rajurkar and J. L. Nissen, "Data-Dependent Systems Approach to Short-Term Load

Forecasting," IEEE Transaction on Systems, Man, and Crybernetics, Vols. SMC-15, no. 4, p.

532, 1985.

[62] H. Xin, J. A. DeShazer, J. J. R. Feddes and K. P. Rajurkar, "Data Dependent Systems Analysis

of Stochastic Swine Energetic Responses," J therm Biol, vol. 17, no. 4.5, pp. 225-234, 1992.

[63] M. Mori, Episcleral Venomanometer EV-310, Boca Raton, Florida: EYETECH LTD., 2016.

[64] R. C. Zeimer, D. K. Gieser, J. T. Wilensky, J. M. North, M. M. Mori and E. E. Odunukwe, "A

Practical Venomanometer: Measurment of Episcleral Venous Pressure and Assessment of

the Normal Range," Arch Ophthalmol, vol. 101, pp. 1447-1449, 1983.

[65] "Rpi Camera Module," elinux.org, 11 July 2017. [Online]. Available:

http://elinux.org/Rpi_Camera_Module#Technical_Parameters_.28v.1_board.29.

91

92

APPENDIX 1:

Stocachstic Equations:

The roots of the equation can be found as follows

(1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑛𝐵𝑛) = (1 − 𝜆1𝐵)(1 − 𝜆2𝐵) … (1 − 𝜆𝑛𝐵)

𝜆𝑖 = 𝑒𝜇𝑖𝛥, i=1,2,….n, where n is the number of data points

with the complex conjugate pair of roots giving the natural frequency and damping ratio.

𝜇1, 𝜇2 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛√1 − 𝜁2

A spring-damper system can be represented as follows which can help give the required

parameters for a dynamic system.

(𝐷2 + 2𝜁𝜔𝑛𝐷 + 𝜔𝑛
2)𝑥(𝑡) =

1

𝑀
𝑓(𝑡)

The dynamics of the difference equation model are seen in the Green’s function:

𝐺𝑗 = 𝑔1𝜆1
𝑗

+ 𝑔2𝜆2
𝑗

+ ⋯ 𝑔𝑛𝜆𝑛
𝑗

with the distinct roots of 𝜆𝑖 given in the coefficients 𝑔𝑘 calculated by

𝑔𝑘 =
(𝜆𝑘

𝑛−1 − 𝜆𝑘
𝑛−2𝜃1 − 𝜆𝑘

𝑛−3𝜃2 − ⋯ − 𝜃𝑛−1)

∏ (𝜆𝑘 − 𝜆𝑖)
𝑛
𝑖=1,𝑖≠𝑘

The Green’s function can also be expressed as:

93

𝑥𝑡 = ∑ 𝐺𝑗𝑎𝑡−𝑗

∞

𝑗=0

To compare multiple models against each other the RSS and F0 and Fcrit are

calculated and used in the F-test, explained below.

Comparing ARMA(2n,2n-1) model with ARMA(2n+2,2n+1)

Hypothesis: 𝐻0 = 𝜙2𝑛+1 = 0 = 𝜙2𝑛+2 = ⋯ = 𝜃2𝑛 = 𝜃2𝑛+1 …

𝐹 =
𝐴1−𝐴0

𝐴0/(𝑁−𝛾)
 : F(s,N-γ)

N=# of observations or data

𝐴1=Sum of Squares of Errors (SSE) of lower order model

𝐴0=SSE of higher order model

F(s,N-γ) F distribution with S and N- γ DOF

γ =total # of parameters to be estimated for higher order model

s=Difference in # of parameters of two models

The equations of a spring-damper system fit closely with the base A(2) model

equation. The A(2) model can then be expressed similar within the spring-damper

equations to helps better describe the parameters.

 𝑥𝑡 = 1.4518𝑥𝑡−1 − .4528𝑥𝑡−2 + 𝑎𝑡 − 3.2289 ∗ 10−5𝑎𝑡−1

94

(𝐷2 + 2𝜁𝜔𝑛𝐷 + 𝜔𝑛
2)𝑥(𝑡) =

1

𝑀
𝑓(𝑡)

𝑢1, 𝑢2 = −𝜁𝜔𝑛 ± 𝜔𝑛√𝜁2 − 1

𝐺(𝑡) =
𝑒𝑢1𝑡 − 𝑒𝑢2𝑡

𝑢1 − 𝑢2

𝛾(𝑠) =
𝜎𝑧

2

2𝑢1𝑢2(𝑢1
2 − 𝑢2

2)
[𝑢2𝑒𝑢1𝑠 − 𝑢1𝑒𝑢2𝑠], 𝑤ℎ𝑒𝑟𝑒 𝑠 = 𝛥𝐾

𝛾(0) =
𝜎𝑧

2

4𝜔𝑛
3𝜁

VarArma(2,1) 𝛾𝑘 = 𝑑1𝜆1
𝑘 + 𝑑2𝜆2

𝑘

𝑑1 =
𝜎𝑧

2

2𝑢1(𝑢1
2 − 𝑢2

2)

𝜆1 = 𝑒𝑢1𝛥

𝑑2 =
−𝜎𝑧

2

2𝑢2(𝑢1
2 − 𝑢2

2)

𝜆2 = 𝑒𝑢2𝛥

𝜙1 = 𝜆1 + 𝜆2 = 𝑒𝑢1𝛥+𝑒𝑢2𝛥

𝜙2 = −𝜆1𝜆2 = 𝑒(𝑢1+𝑢2)𝛥

𝜃1
2 + 2𝑃𝜃1 + 1 = 0

𝜃1 = −𝑃 ± √𝑃2 − 1

95

𝑃 =
−𝑢1(1 + 𝜆1

2)(1 − 𝜆2
2) + 𝑢2(1 + 𝜆2

2)(1 − 𝜆1
2)

𝑢1𝜆1(1 − 𝜆2
2) − 𝑢2𝜆2(1 − 𝜆1

2)

Another method that can be used for updating is using the Green’s function with these

equations:

𝑥̂𝑡(𝑙) = 𝐺𝑙𝑎𝑡 + 𝐺𝑙+1𝑎𝑡−1 + 𝐺𝑙+2𝑎𝑡−2 + ⋯

𝑥̂𝑡+1(𝑙) = 𝐺𝑙𝑎𝑡+𝑙 + 𝑥̂𝑡(𝑙 + 1)

96

Circle Y:

Order RSS #UAC>3 F0<>Fcrit

0,0 208407.3 105

1,0 4408.698 8 232082.63408>3.8604

2,1 3678.01 1 32.3822>2.6231

4,3 3665.435 1 .41598<2.3903

6,5 3648.789 1 .48151<1.9576

The model of interest is the ARMA(2,1) model. This was chosen due to the

ARMA (4,3) model showing not much improvement in the reduction of errors proven

with the F test .41598<2.3903.

After finding the parameters of the equation the values are 𝜙1 = 1.4280, 𝜙2 =

−.4299 and 𝜃1 = .0346. Looking at a ARMA(2,1) model that appears in this form:

 𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 ARMA(2,1)

Plugging in the values from the program:

 𝑥𝑡 = 1.4280𝑥𝑡−1 − .4299𝑥𝑡−2 + 𝑎𝑡 − .0346𝑎𝑡−1 ARMA(2,1) Y

97

98

99

Square X:

100

Looking at the x portion:

101

Order RSS #UAC>3 F0<>Fcrit

0,0 3823161 105

1,0 4998.585 24 404839.7739>3.8591

2,1 3812.761 5 54.6349>2.6218

4,3 3813.234 4 -0.016204<2.389

6,5 3692.074 5 2.1207>1.9562

20,19 3535.125 3 .77853<1.4993

The model of interest is the ARMA(2,1) model. This was chosen due to the

ARMA (4,3) model showing not much improvement in the reduction of errors proven

with the F test -.016204 <2.389.

After finding the parameters of the equation the values are 𝜙1 = 1.4605, 𝜙2 =

−.4616 and 𝜃1 =-.0264 Looking at a ARMA(2,1) model that appears in this form:

 𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 ARMA(2,1)

Plugging in the values from the program:

 𝑥𝑡 = 1.4605𝑥𝑡−1 − .4616𝑥𝑡−2 + 𝑎𝑡 + .0264𝑎𝑡−1 ARMA(2,1) X

102

103

Square Y:

Order RSS #UAC>3 F0<>Fcrit

0,0 1882863 112

1,0 4588.306 4 216961.4329>3.8591

2,1 4084.694 1 21.6583>2.6218

4,3 4062.313 1 .72038<2.389

6,5 3973.808 1 1.8103<1.9562

104

The model of interest is the ARMA(2,1) model. This was chosen due to the

ARMA (4,3) model showing not much improvement in the reduction of errors proven

with the F test .72038<2.389.

After finding the parameters of the equation the values are 𝜙1 = 1.3803, 𝜙2 =

−.3818 and 𝜃1 =.0627. Looking at a ARMA(2,1) model that appears in this form:

 𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 ARMA(2,1)

Plugging in the values from the program:

 𝑥𝑡 = 1.3803𝑥𝑡−1 − .3818𝑥𝑡−2 + 𝑎𝑡 − .0627𝑎𝑡−1 ARMA(2,1) Y

105

106

Triangle X:

107

108

Order RSS #UAC>3 F0<>Fcrit

0,0 14977486 117

1,0 1090.939 62 822464.498>3.8581

2,1 7648.735 6 61.7099>2.6209

4,3 7631.536 4 .31157<2.3881

6,5 7551.766 2 .8818<1.9553

The model of interest is the ARMA(2,1) model. This was chosen due to the

ARMA (4,3) model showing not much improvement in the reduction of errors proven

with the F test .31157<2.3881.

After finding the parameters of the equation the values are 𝜙1 = 1.4971, 𝜙2 =

−.4977 and 𝜃1 =.0180. Looking at a ARMA(2,1) model that appears in this form:

 𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 ARMA(2,1)

Plugging in the values from the program:

 𝑥𝑡 = 1.4971𝑥𝑡−1 − .4977 𝑥𝑡−2 + 𝑎𝑡 − .0180𝑎𝑡−1 ARMA(2,1) X

109

110

111

Triangle Y:

Order RSS #UAC>3 F0<>Fcrit

0,0 6086454 117

1,0 6025.892 42 565068.1576>3.8581

2,1 4519.056 2 61.9088>2.6209

4,3 4545.927 2 -0.8172<2.3881

6,5 4555.786 2 -0.55328<1.9553

The model of interest is the ARMA(2,1) model. This was chosen due to the

ARMA (4,3) model showing not much improvement in the reduction of errors proven

with the F test -.8172 <2.3881.

After finding the parameters of the equation the values are 𝜙1 = 1.6836, 𝜙2 =

−.6840 and 𝜃1 =.2779. Looking at a ARMA(2,1) model that appears in this form:

 𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 ARMA(2,1)

Plugging in the values from the program:

 𝑥𝑡 = 1.6836𝑥𝑡−1 − .6840 𝑥𝑡−2 + 𝑎𝑡 − .2779𝑎𝑡−1 ARMA(2,1) Y

112

113

114

Summary:

Circle:

 𝑥𝑡 = 1.4518𝑥𝑡−1 − .4528𝑥𝑡−2 + 𝑎𝑡 − 3.2289 ∗ 10−5𝑎𝑡−1 X

𝑥𝑡 = 1.4280𝑥𝑡−1 − .4299𝑥𝑡−2 + 𝑎𝑡 − .0346𝑎𝑡−1 Y

Square:

𝑥𝑡 = 1.4605𝑥𝑡−1 − .4616𝑥𝑡−2 + 𝑎𝑡 + .0264𝑎𝑡−1 X

 𝑥𝑡 = 1.3803𝑥𝑡−1 − .3818𝑥𝑡−2 + 𝑎𝑡 − .0627𝑎𝑡−1 Y

Triangle:

𝑥𝑡 = 1.4971𝑥𝑡−1 − .4977 𝑥𝑡−2 + 𝑎𝑡 − .0180𝑎𝑡−1 X

 𝑥𝑡 = 1.6836𝑥𝑡−1 − .6840 𝑥𝑡−2 + 𝑎𝑡 − .2779𝑎𝑡−1 Y

115

HOUGH TRANSFORMS:

Now to look at the information from the Hough Transforms. For this we will be looking

at the perfect transforms to try and make a model from them.

Circle:

Order RSS #UAC>3 F0<>Fcrit

0,0 337927303.6 19

1,0 2266248.977 1 20782.2621>3.8884

2,1 10855181.76 1 71.4264>2.6504

4,3 9552763.11 0 6.5784>2.4184

6,5 9702242.796 0 -0.072797<2.4194

116

The model of interest is the ARMA(4,3) model. This was chosen due to the

ARMA (6,5) model showing not much improvement in the reduction of errors proven

with the F test -.072797<2.4194.

 𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + 𝜙3𝑥𝑡−3 + 𝜙4𝑥𝑡−4 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − 𝜃3𝑎𝑡−3

ARMA(4,3)

Plugging in the values from the program: 𝜙1 = .9378 𝜙2 = −.0512 𝜙3 = .0208

𝜙4 = −.0055 𝜃1 = −1.0223 𝜃2 = −.6001 𝜃3 = 2.6224 ∗ 10−6

 𝑥𝑡 = .9378 𝑥𝑡−1 − .0512𝑥𝑡−2 + .0208 𝑥𝑡−3 − .0055𝑥𝑡−4 + 𝑎𝑡 + 1.0223𝑎𝑡−1 +

.6001𝑎𝑡−2 − 2.6224 ∗ 10−6𝑎𝑡−3

117

118

119

Square:

Order RSS #UAC>3 F0<>Fcrit

0,0 336688422.3 15

1,0 29835388.44 2 2046.6887>3.8886

2,1 22677807.01 0 20.6205>2.6507

4,3 21786042.43 0 1.9648<2.4187

6,5 21951324.39 0 .77774<1.9879

The model of interest is the ARMA(4,3) model. This was chosen due to the

previous choosing of ARMA(4,3), although a ARMA(2,1) may have fit this model fine as

shown with the F-test.

120

 𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + 𝜙3𝑥𝑡−3 + 𝜙4𝑥𝑡−4 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − 𝜃3𝑎𝑡−3

ARMA(4,3)

Plugging in the values from the program: 𝜙1 = 1.4977𝜙2 = −.8875 𝜙3 = .6115

𝜙4 = −.2867 𝜃1 = .0063 𝜃2 = −1.9988 ∗ 10−5 𝜃3 = 8.6367 ∗ 10−9

 𝑥𝑡 = 1.4977 𝑥𝑡−1 − .8875𝑥𝑡−2 + .6115𝑥𝑡−3 − .2867 𝑥𝑡−4 + 𝑎𝑡 − .0063 𝑎𝑡−1 +

1.9988 ∗ 10−5𝑎𝑡−2 − 8.6367 ∗ 10−9𝑎𝑡−3

121

122

Triangle:

Order RSS #UAC>3 F0<>Fcrit

0,0 92575038 43

1,0 1180447 0 13471.7276>3.8955

2,1 1020838 0 8.912>2.6574

4,3 1013129 0 .31767<2.4258

6,5 979087.7 0 .86884<1.9956

The model of interest is the ARMA(4,3) model. This was chosen due to the

previous choosing of ARMA(4,3), although a ARMA(2,1) may have fit this model fine as

shown with the F-test.

123

 𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + 𝜙3𝑥𝑡−3 + 𝜙4𝑥𝑡−4 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − 𝜃3𝑎𝑡−3

ARMA(4,3)

Plugging in the values from the program: 𝜙1 = .2432𝜙2 = .6255 𝜙3 =

.1589𝜙4 = −.0380 𝜃1 = −.5676 𝜃2 = −.0815 𝜃3 = −2.6194 ∗ 10−4

 𝑥𝑡 = .2432𝑥𝑡−1 + .6255 𝑥𝑡−2 + .1589𝑥𝑡−3 − .0380 𝑥𝑡−4 + 𝑎𝑡 + .5676 𝑎𝑡−1 +

.0815 𝑎𝑡−2 + 2.6194 ∗ 10−4𝑎𝑡−3

124

Summarized Results:

Circle

 𝑥𝑡 = .9378 𝑥𝑡−1 − .0512𝑥𝑡−2 + .0208 𝑥𝑡−3 − .0055𝑥𝑡−4 + 𝑎𝑡 + 1.0223𝑎𝑡−1 +

.6001𝑎𝑡−2 − 2.6224 ∗ 10−6𝑎𝑡−3

Square

 𝑥𝑡 = 1.4977 𝑥𝑡−1 − .8875𝑥𝑡−2 + .6115𝑥𝑡−3 − .2867 𝑥𝑡−4 + 𝑎𝑡 − .0063 𝑎𝑡−1 +

1.9988 ∗ 10−5𝑎𝑡−2 − 8.6367 ∗ 10−9𝑎𝑡−3

125

Triangle

 𝑥𝑡 = .2432𝑥𝑡−1 + .6255 𝑥𝑡−2 + .1589𝑥𝑡−3 − .0380 𝑥𝑡−4 + 𝑎𝑡 + .5676 𝑎𝑡−1 +

.0815 𝑎𝑡−2 + 2.6194 ∗ 10−4𝑎𝑡−3

126

Appendix 2:

This appendix shows extra photos of the cad assembly.

Iteration 1:

127

128

129

Iteration 2:

130

131

Iteration 3:

132

133

Iteration 4:

134

135

Iteration 5:

136

137

138

139

APPENDIX 3:

This appendix holds all of the code required for the current version of the Shape

Detection program.

140

ShapeRecognGuiTest.m:

function varargout = ShapeRecognGuiTest(varargin)
% SHAPERECOGNGUITEST MATLAB code for ShapeRecognGuiTest.fig
% SHAPERECOGNGUITEST, by itself, creates a new SHAPERECOGNGUITEST

or raises the existing
% singleton*.
%
% H = SHAPERECOGNGUITEST returns the handle to a new

SHAPERECOGNGUITEST or the handle to
% the existing singleton*.
%
% SHAPERECOGNGUITEST('CALLBACK',hObject,eventData,handles,...)

calls the local
% function named CALLBACK in SHAPERECOGNGUITEST.M with the given

input arguments.
%
% SHAPERECOGNGUITEST('Property','Value',...) creates a new

SHAPERECOGNGUITEST or raises the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before ShapeRecognGuiTest_OpeningFcn gets

called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to ShapeRecognGuiTest_OpeningFcn

via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help ShapeRecognGuiTest

% Last Modified by GUIDE v2.5 02-Aug-2016 15:08:44

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @ShapeRecognGuiTest_OpeningFcn,

...
 'gui_OutputFcn', @ShapeRecognGuiTest_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

141

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before ShapeRecognGuiTest is made visible.
function ShapeRecognGuiTest_OpeningFcn(hObject, eventdata, handles,

varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to ShapeRecognGuiTest (see

VARARGIN)

% Choose default command line output for ShapeRecognGuiTest
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);
%% Clear all the data
echo off; %Doesn't display code the user doesn't need
clc; %Clears the command window For the User
clear vars; %Cleans up any previous data
global testNum;
testNum=1;
%% Set up all the images
SetupOverlay=imread('CoMands\Overlay.PNG');
imshow(SetupOverlay, 'Parent', handles.ShapeOverlay);
SetupOverlay=imread('CoMands\Circle.PNG');
imshow(SetupOverlay, 'Parent', handles.Circle);
SetupOverlay=imread('CoMands\Square.PNG');
imshow(SetupOverlay, 'Parent', handles.Square);
SetupOverlay=imread('CoMands\Triangle.PNG');
imshow(SetupOverlay, 'Parent', handles.Triangle);
SetupOverlay=imread('CoMands\Blank.PNG');
imshow(SetupOverlay, 'Parent', handles.ShapeResult);
%% Information for the rest of the program
global inifilename;
inifilename='config\Settings.ini';
inputimage=SetupOverlay;
global imsize
imsize=size(inputimage);

% UIWAIT makes ShapeRecognGuiTest wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

142

function varargout = ShapeRecognGuiTest_OutputFcn(hObject, eventdata,

handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function TextResults_Callback(hObject, eventdata, handles)
% hObject handle to TextResults (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of TextResults as text
% str2double(get(hObject,'String')) returns contents of

TextResults as a double

% --- Executes during object creation, after setting all properties.
function TextResults_CreateFcn(hObject, eventdata, handles)
% hObject handle to TextResults (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in Start.
function Start_Callback(hObject, eventdata, handles)
% hObject handle to Start (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global inifilename;
set(handles.TextResults, 'String', 'Drawing....');
SetupOverlay=imread('CoMands\Blank.PNG');
imshow(SetupOverlay, 'Parent', handles.ShapeResult);
imshow(SetupOverlay, 'Parent', handles.ActualDrawn);
Calibration=cell2mat(inifile(inifilename,'read',{'GazePointAPI','Calibr

ation','Calibrate','d','ERR'})); %Set Calibration to 1 for test
TotalBlinktime=cell2mat(inifile(inifilename,'read',{'GazePointAPI','Cal

ibration','TotalBlinktime','d','ERR'}));%Reccomended setting is to be 8
[tx1,ty1]=GazePointApi(Calibration,TotalBlinktime);

143

global recordX;
recordX=tx1;
global recordY;
recordY=ty1;
set(handles.TextResults, 'String', 'Processing....');
[position]=FindtheCenter(tx1,ty1,2); %Multiple options for What center

technique is used
NumAvG=cell2mat(inifile(inifilename,'read',{'DataFilter','NumbertoAvg',

'Number','d','ERR'}));
[x1,y1]=DataFilter(tx1,ty1,position,NumAvG); %Standarddeviation filter

with average sum
[shape,Value]=ShapeRecognFnc(x1,y1,position);
set(handles.TextResults, 'String', strcat(shape,' with SPSE of

',num2str(Value)));
global SPSE;
SPSE=Value;
if strcmp(shape,'Circle')==1
 SetupOverlay=imread('CoMands\Circle.PNG');
 imshow(SetupOverlay, 'Parent', handles.ShapeResult);
end
if strcmp(shape,'Square')==1
 SetupOverlay=imread('CoMands\Square.PNG');
 imshow(SetupOverlay, 'Parent', handles.ShapeResult);
end
if strcmp(shape,'Triangle')==1
 SetupOverlay=imread('CoMands\Triangle.PNG');
 imshow(SetupOverlay, 'Parent', handles.ShapeResult);
end
FilledImg=DISPXY(x1,y1);
global TransferShape;
TransferShape=shape;

imshow(FilledImg, 'Parent', handles.ActualDrawn);

% --- Executes on button press in OpenGazeControl.
function OpenGazeControl_Callback(hObject, eventdata, handles)
% hObject handle to OpenGazeControl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
ProgramLaunher();

% --- Executes on button press in Calibrate.
function Calibrate_Callback(hObject, eventdata, handles)
% hObject handle to Calibrate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
Calibration=1;
TotalBlinktime=1;
GazePointApi(Calibration,TotalBlinktime);

144

% --- Executes on button press in EXIT.
function EXIT_Callback(hObject, eventdata, handles)
% hObject handle to EXIT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close all

% --- Executes during object creation, after setting all properties.
function ActualDrawn_CreateFcn(hObject, eventdata, handles)
% hObject handle to ActualDrawn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: place code in OpeningFcn to populate ActualDrawn

% % --- Executes on button press in robotsend.
% function robotsend_Callback(hObject, eventdata, handles)
% % hObject handle to robotsend (see GCBO)
% % eventdata reserved - to be defined in a future version of MATLAB
% % handles structure with handles and user data (see GUIDATA)
% global TransferShape;
% Shape=TransferShape;
% port=str2num(get(handles.PortTag, 'String'));
% BaudRate=str2num(get(handles.BaudTag, 'String'));
% set(handles.TextResults, 'String', 'Sending....');
% SendRobot(Shape,port,BaudRate)
% set(handles.TextResults, 'String', 'Ready!');

% function PortTag_Callback(hObject, eventdata, handles)
% % hObject handle to PortTag (see GCBO)
% % eventdata reserved - to be defined in a future version of MATLAB
% % handles structure with handles and user data (see GUIDATA)
%
% % Hints: get(hObject,'String') returns contents of PortTag as text
% % str2double(get(hObject,'String')) returns contents of

PortTag as a double
%
%
% % --- Executes during object creation, after setting all properties.
% function PortTag_CreateFcn(hObject, eventdata, handles)
% % hObject handle to PortTag (see GCBO)
% % eventdata reserved - to be defined in a future version of MATLAB

145

% % handles empty - handles not created until after all CreateFcns

called
%
% % Hint: edit controls usually have a white background on Windows.
% % See ISPC and COMPUTER.
% if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
% set(hObject,'BackgroundColor','white');
% end
%
%
%
% function BaudTag_Callback(hObject, eventdata, handles)
% % hObject handle to BaudTag (see GCBO)
% % eventdata reserved - to be defined in a future version of MATLAB
% % handles structure with handles and user data (see GUIDATA)
%
% % Hints: get(hObject,'String') returns contents of BaudTag as text
% % str2double(get(hObject,'String')) returns contents of

BaudTag as a double
%
%
% % --- Executes during object creation, after setting all properties.
% function BaudTag_CreateFcn(hObject, eventdata, handles)
% % hObject handle to BaudTag (see GCBO)
% % eventdata reserved - to be defined in a future version of MATLAB
% % handles empty - handles not created until after all CreateFcns

called
%
% % Hint: edit controls usually have a white background on Windows.
% % See ISPC and COMPUTER.
% if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
% set(hObject,'BackgroundColor','white');
% end

function UserID_Callback(hObject, eventdata, handles)
% hObject handle to UserID (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of UserID as text
% str2double(get(hObject,'String')) returns contents of UserID

as a double

% --- Executes during object creation, after setting all properties.
function UserID_CreateFcn(hObject, eventdata, handles)
% hObject handle to UserID (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

146

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in SaveResults.
function SaveResults_Callback(hObject, eventdata, handles)
% hObject handle to SaveResults (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
IDNumber=get(handles.UserID, 'String');
global recordX;
trecordX=recordX;
global recordY;
trecordY=recordY;
global SPSE;
tSPSE=SPSE;
global testNum;
SaveToFiles(IDNumber,trecordX,trecordY,tSPSE,testNum);
testNum=testNum+1;

147

Settings.ini:

[ShapeRecogn]

{Image Resolution}

width=450

height=600

{Augmented Shape}

Marker=ON

Markersize=20

radius=45

LineWidth=5

Circle=ON

Square=ON

Triangle=ON

{Bound Size}

bounds=16

{Weighted Percentage}

Scalar=10

{Save File}

Save=OFF

148

{Disp Results}

Percentages=OFF

NUMOFCORNERS=OFF

SPSE=ON

{Create Results File}

ResultsFile=OFF

[Corner Detection]

{Harris}

MaxCorners=8

QualityLevel=.48

SensitivityFactor=.04

{SPSE WEIGHTS}

LOWCIRCLE=4

HIGHCIRCLE=6

LOWSQUARE=1

HIGHSQUARE=2

LOWTRIANGLE=1

HIGHTRIANGLE=2

LWEIGHT=1

HWEIGHT=2

149

[ShapeDetect]

{DataSet Options}

UseDataSet=ON

{Disp Results}

medval=OFF

diffarea=OFF

diffmeanvals=OFF

diffslopes=OFF

{MEDVAL}

BESTWEIGHT=3

OTHERWEIGHT=1

{Differnt Area}

Scale=4

{MeanValues}

howfar=1/3

Scale=4.5

{Slope}

avgpoints=5

150

howfar=3/5

scale=3

[FilterMaker]

{Correction Values}

Circle=0

Square=6

Triangle=6

[HoughAssist]

{Stationaryvalues}

topradius=2000

splits=10

[DataTableRead]

{ON OFF}

Data=OFF

{CurrentTest}

TESTNUM=1

{MASSTESER}

Tester=OFF

mintest=1

151

maxtest=60

[GazePointAPI]

{UseEyeGaze}

Data=ON

{Calibration}

Calibrate=2

TotalBlinktime=8

[DataFilter]

{NumbertoAvg}

Number=10

152

Inifile.m:

function varargout = inifile(varargin)
%INIFILE Creates, reads, or writes data from/to a standard ini (ascii)
% file. Such a file is organized into sections
% ([section name]), subsections(enclosed by {subsection name}),
% and keys (key=value). Empty lines and lines with the first

non-empty
% character being ; (comment lines) are ignored.
%
% Usage:
% INIFILE(fileName,'new')
% Rewrites an existing file - creates a new, empty file.
%
% INIFILE(fileName,'write',keys,<style>)
% Writes keys given as cell array of strings (see description

of
% the keys below). Optional style variable: 'tabbed' writes

sections,
% subsections and keys in a tabbed style to get more readable
% file. The 'plain' style is the default style. This only

affects
% the keys that will be written/rewritten.
%
% INIFILE(fileName,'deletekeys',keys)
% Deletes keys and their values - if they exist.
%
% [readsett,result] = INIFILE(fileName,'read',keys)
% Reads the values of the keys where readsett is a cell array

of
% strings and/or numeric values of the keys. If any of the

keys
% is not found, the default value is returned (if given in

the
% 5-th column of the keys parameter). result is a cell array

of
% strings - one for each key read; empty if OK, error/warning
% string if error; in both cases an empty string is returned

in
% readsett{i} for the i-th key if error.
%
% [keys,sections,subsections] = INIFILE(fName,'readall')
% Reads entire file and returns all the sections, subsections
% and keys found.
%
%
% Notes on the keys cell array given as an input parameter:
% Cell array of STRINGS; either 3, 4, or 5 columns.
% Each row has the same number of columns. The columns are:
% 'section': section name string (the root is considered

if
% empty)
% 'subsection': subsection name string (the root is

considered

153

% if empty)
% 'key': name of the field to write/read from (given

as
% a string).
% value: (optional) STRING or NUMERIC value (scalar

or
% matrix) to be written to the
% ini file in the case of 'write' operation

OR
% conversion CHAR for read operation:
% 'i' for integer, 'd' for double, 's' or
% '' or not given for string (default).
% defaultValue: (optional) string or numeric value (scalar

or
% matrix) that is returned when the key is

not
% found or an empty value is found
% when reading ('read' operation).
% If the defaultValue is not given and the

key
% is not found, an empty value is returned.
% It MUST be in the format as given by the
% value, e.g. if the value = 'i' it must be
% given as an integer etc.
%
%
% EXAMPLE:
% Suppose we want a new ini file, test1.ini with 4 fields,

including a
% 5x5 matrix (see below). We can write the 5 fields into the ini

file
% using:
%
% x = rand(5); % matrix data
% inifile('test1.ini','new');
% writeKeys = {'measurement','person','name','Primoz Cermelj';...
% 'measurement','protocol','id',1;...
% 'application','','description.m1','some...';...
% 'application','','description.m2','some...';...
% 'data','','x',x};
% inifile('test1.ini','write',writeKeys,'plain');
%
% Later, you can read them out. Additionally, if any of them

won't
% exist, a default value will be returned (if the 5-th column is

given
% for all the rows as below).
%
% readKeys = {'measurement','person','name','','John Doe';...
% 'measurement','protocol','id','i',0;...
% 'application','','description.m1','','none';...
% 'application','','description.m2','','none';...
% 'data','','x','d',zeros(5)};
% readSett = inifile('test1.ini','read',readKeys);

154

%
% Or, we can just read all the keys out
% [keys,sections,subsections] = inifile(test1.ini,'readall');
%
%
% NOTES: If the operation is 'write' and the file is empty or does

not
% exist, a new file is created. When writing and if any of the

section
% or subsection or key does not exist, it creates (adds) a new one.
% Everything but value is NOT case sensitive. Given keys and values
% will be trimmed (leading and trailing spaces will be removed).
% Any duplicates (section, subsection, and keys) are ignored. Empty
% section and/or subsection can be given as an empty string, '',
% but NOT as an empty matrix, [].
%
% Numeric matrices can be represented as strings in one of the two

form:
% '1 2 3;4 5 6' or '1,2,3;4,5,6' (an example).
%
% Comment lines starts with ; as the first non-empty character but
% comments can not exist as a tail to a standard, non-comment line as

;
% is also used as a row delimiter for matrices.
%
% This function was tested on the win32 platform only but it should
% also work on Unix/Linux platforms. Since some short-circuit

operators
% are used, at least Matlab 6.5 (R13) is required.
%
%
% First release on 29.01.2003
% (c) Primoz Cermelj, Slovenia
% Contact: primoz.cermelj@gmail.com
% Download location:

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectI

d=2976&objectType=file
%
% Version: 1.4.2
% Last revision: 12.01.2007
%
% Bug reports, questions, etc. can be sent to the e-mail given above.
%
% ACKNOWLEDGEMENTS: Thanks to Diego De Rosa for a suggestion/fix how

to
% read the value when the key is found but empty.
%--

%----------------
% INIFILE history
%----------------
%
% [v.1.4.2] 12.01.2007

155

% - FIX: When in read mode and a certain key is found but the value is
% empty, the default value will be used instead.
%
% [v.1.4.1] 12.01.2006
% - FIX: Some minor refinements (speed,...)
%
% [v.1.4.0] 05.12.2006
% - NEW: New 'readall' option added which reads all the sections,
% subsections and keys out
%
% [v.1.3.2 - v.1.3.5] 25.08.2004
% - NEW: Speed improvement for large files - using fread and fwrite

instead
% of fscanf and fprintf, respectively
% - NEW: Some minor changes
% - NEW: Writing speed-up
% - NEW: New-line chars are properly set for pc, unix, and mac
%
% [v.1.3.1] 04.05.2004
% - NEW: Comment lines are detected and thus ignored; comment lines are
% lines with first non-empty character being ;
% - NEW: Lines not belonging to any of the recognized types (key,

section,
% comment,...) raise an error.
%
% [v.1.3.0] 21.04.2004
% - NEW: 2D Numeric matrices can be read/written
% - FIX: Bug related to read operation and default value has been

removed
%
% [v.1.2.0] 30.04.2004
% - NEW: Automatic conversion capability (integers, doubles, and

strings)
% added for read and write operations
%
% [v.1.1.0] 04.02.2004
% - FIX: 'writetext' option removed (there was a bug previously)
%
% [v.1.01b] 19.12.2003
% - NEW: A new concept - multiple keys can now be read, written, or

deleted
% ALL AT ONCE which makes this function much faster. For

example, to
% write 1000 keys, using previous versions it took 157 seconds

on a
% 1.5 GHz machine, with this new version it took only 0.9

seconds.
% In general, the speed improvement is greater when a larger

number of
% read/written keys is considered (with respect to the older

version).
% - NEW: The format of the input parameters has changed. See above.
%
% [v.0.97] 19.11.2003

156

% - NEW: Additional m-function, strtrim, is no longer needed
%
% [v.0.96] 16.10.2003
% - FIX: Detects empty keys
%
% [v.0.95] 04.07.2003
% - NEW: 'deletekey' option/operation added
% - FIX: A major file refinement to obtain a more compact utility ->
% additional operations can "easily" be implemented
%
% [v.0.91-0.94]
% - FIX: Some minor refinements
%
% [v.0.90] 29.01.2003
% - NEW: First release of this tool
%
%----------------

global NL_CHAR;

% Checks the input arguments
if nargin == 0
 disp('INIFILE v1.4.2');
 disp('Copyright (c) 2003-2007 Primoz Cermelj');
 disp('This is FREE SOFTWARE');
 disp('Type <help inifile> to get more help on its usage');
 return
elseif nargin < 2
 error('Not enough input arguments');
end

fileName = varargin{1};
operation = varargin{2};

if (strcmpi(operation,'read')) | (strcmpi(operation,'deletekeys'))
 if nargin < 3
 error('Not enough input arguments.');
 end
 if ~exist(fileName)
 error(['File ' fileName ' does not exist.']);
 end
 keys = varargin{3};
 [m,n] = size(keys);
 if n < 3
 error('Keys argument must have at least 3 columns for read

operation');
 end
 for ii=1:m
 if isempty(keys(ii,3)) | ~ischar(keys{ii,3})
 error('Empty or non-char keys are not allowed.');
 end
 end
elseif (strcmpi(operation,'write'))
 if nargin < 3

157

 error('Not enough input arguments');
 end
 keys = varargin{3};
 if nargin < 4 || isempty(varargin{4})
 style = 'plain';
 else
 style = varargin{4};
 if ~(strcmpi(style,'plain') | strcmpi(style,'tabbed')) |

~ischar(style)
 error('Unsupported style given or style not given as a

string');
 end
 end
 [m,n] = size(keys);
 if n < 4
 error('Keys argument requires 4 columns for write operation');
 end
 for ii=1:m
 if isempty(keys(ii,3)) | ~ischar(keys{ii,3})
 error('Empty or non-char keys are not allowed.');
 end
 end
elseif (strcmpi(operation,'readall'))
 %
elseif (~strcmpi(operation,'new'))
 error(['Unknown inifile operation: ''' operation '''']);
end
if nargin >= 3
 for ii=1:m
 for jj=1:3
 if ~ischar(keys{ii,jj})
 error('All cells from the first 3 columns must be given

as strings, even the empty ones.');
 end
 end
 end
end

% Sets the new-line character/string
if ispc
 NL_CHAR = '\r\n';
elseif isunix
 NL_CHAR = '\n';
else
 NL_CHAR = '\r';
end

readsett = [];
result = [];

%----------------------------
% CREATES a new, empty file (rewrites an existing one)
%----------------------------

158

if strcmpi(operation,'new')
 fh = fopen(fileName,'w');
 if fh == -1
 error(['File: ''' fileName ''' can not be (re)created']);
 end
 fclose(fh);
 return

%----------------------------
% READS the whole data (all keys)
%----------------------------
elseif (strcmpi(operation,'readall'))
 [keys,sections,subsections] = readallkeys(fileName);
 varargout(1) = {keys};
 varargout(2) = {sections};
 varargout(3) = {subsections};
 return

%----------------------------
% READS key-value pairs out
%----------------------------
elseif (strcmpi(operation,'read'))
 result = cell(m,1);
 if n >= 4
 conversionOp = keys(:,4); % conversion operation: 'i',

'd', or 's' ('') - for each key to be read
 else
 conversionOp = cellstrings(m,1);
 end
 if n < 5
 defaultValues = cellstrings(m,1);
 else
 defaultValues = keys(:,5);
 end
 readsett = defaultValues;
 keysIn = keys(:,1:3);
 [secsExist,subsecsExist,keysExist,readValues,so,eo] =

findkeys(fileName,keysIn);
 ind = find(keysExist);
 % For those keys that exist but have empty values, replace them

with
 % the default values
 if ~isempty(ind)
 ind_empty = zeros(size(ind));
 for kk = 1:size(ind,1)
 ind_empty(kk) = isempty(readValues{ind(kk)});
 end
 ind(find(ind_empty)) = [];
 readsett(ind) = readValues(ind);
 end
 % Now, go through all the keys and do the conversion if the

conversion
 % char is given
 for ii=1:m

159

 if ~isempty(conversionOp{ii}) & ~strcmpi(conversionOp{ii},'s')
 if strcmpi(conversionOp{ii},'i') |

strcmpi(conversionOp{ii},'d')
 if ~isnumeric(readsett{ii})
 readsett{ii} = str2num(readsett{ii});
 end
 if strcmpi(conversionOp{ii},'i')
 readsett{ii} = round(readsett{ii});
 end
 if isempty(readsett{ii})
 result{ii} = [num2str(ii) '-th key ' keysIn{ii,3}

'or given defaultValue could not be converted using '''

conversionOp{ii} ''' conversion'];
 end
 else
 error(['Invalid conversion char given: '

conversionOp{ii}]);
 end
 end
 end
 varargout(1) = {readsett};
 varargout(2) = {result};
 return

%----------------------------
% WRITES key-value pairs to an existing or non-existing
% file (file can even be empty)
%----------------------------
elseif (strcmpi(operation,'write'))
 if m < 1
 error('At least one key is needed when writing keys');
 end
 if ~exist(fileName)
 inifile(fileName,'new');
 end
 for ii=1:m % go through ALL the keys and convert them to strings
 keys{ii,4} = n2s(keys{ii,4});
 end
 writekeys(fileName,keys,style);
 return

%----------------------------
% DELETES key-value pairs out
%----------------------------
elseif (strcmpi(operation,'deletekeys'))
 deletekeys(fileName,keys);

else
 error('Unknown operation for INIFILE.');
end

160

%--
%%%%%%%%%%%%% SUBFUNCTIONS SECTION %%%%%%%%%%%%%%%%
%--

%------------------------------------
function

[secsExist,subSecsExist,keysExist,values,startOffsets,endOffsets] =

findkeys(fileName,keysIn)
% This function parses ini file for keys as given by keysIn. keysIn is

a cell
% array of strings having 3 columns; section, subsection and key in

each row.
% section and/or subsection can be empty (root section or root

subsection)
% but the key can not be empty. The startOffsets and endOffsets are

start and
% end bytes that each key occuppies, respectively. If any of the keys

doesn't exist,
% startOffset and endOffset for this key are the same. A special case

is
% when the key that doesn't exist also corresponds to a non-existing
% section and non-existing subsection. In such a case, the startOffset

and
% endOffset have values of -1.

nKeys = size(keysIn,1); % number of keys
nKeysLocated = 0; % number of keys located
secsExist = zeros(nKeys,1); % if section exists (and is non-empty)
subSecsExist = zeros(nKeys,1); % if subsection...
keysExist = zeros(nKeys,1); % if key that we are looking for exists
keysLocated = keysExist; % if the key's position (existing or

non-existing) is LOCATED
values = cellstrings(nKeys,1); % read values of keys (strings)
startOffsets = -ones(nKeys,1); % start byte-position of the keys
endOffsets = -ones(nKeys,1); % end byte-position of the keys

keyInd = find(strcmpi(keysIn(:,1),'')); % key indices having []

section (root section)

line = [];
lineN = 0; % line number
currSection = '';
currSubSection = '';

fh = fopen(fileName,'r');
if fh == -1
 error(['File: ''' fileName ''' does not exist or can not be

opened.']);
end

161

try
 %--- Searching for the keys - their values and start and end

locations in bytes
 while 1

 pos1 = ftell(fh);
 line = fgetl(fh);
 if line == -1 % end of file, exit
 line = [];
 break
 end
 lineN = lineN + 1;
 [status,readValue,readKey] = processiniline(line);
 if (status == 1) % (new) section found
 % Keys that were found as belonging to any previous section
 % are now assumed as located (because another
 % section is found here which could even be a repeated one)
 keyInd = find(~keysLocated &

strcmpi(keysIn(:,1),currSection));
 if length(keyInd)
 keysLocated(keyInd) = 1;
 nKeysLocated = nKeysLocated + length(keyInd);
 end
 currSection = readValue;
 currSubSection = '';
 % Indices to non-located keys belonging to current section
 keyInd = find(~keysLocated &

strcmpi(keysIn(:,1),currSection));
 if ~isempty(keyInd)
 secsExist(keyInd) = 1;
 end
 pos2 = ftell(fh);
 startOffsets(keyInd) = pos2+1;
 endOffsets(keyInd) = pos2+1;
 elseif (status == 2) % (new) subsection found
 % Keys that were found as belonging to any PREVIOUS section
 % and/or subsection are now assumed as located (because

another
 % subsection is found here which could even be a repeated

one)
 keyInd = find(~keysLocated &

strcmpi(keysIn(:,1),currSection) & ~keysLocated &

strcmpi(keysIn(:,2),currSubSection));
 if length(keyInd)
 keysLocated(keyInd) = 1;
 nKeysLocated = nKeysLocated + length(keyInd);
 end
 currSubSection = readValue;
 % Indices to non-located keys belonging to current section

and subsection at the same time
 keyInd = find(~keysLocated &

strcmpi(keysIn(:,1),currSection) & ~keysLocated &

strcmpi(keysIn(:,2),currSubSection));

162

 if ~isempty(keyInd)
 subSecsExist(keyInd) = 1;
 end
 pos2 = ftell(fh);
 startOffsets(keyInd) = pos2+1;
 endOffsets(keyInd) = pos2+1;
 elseif (status == 3) % key found
 if isempty(keyInd)
 continue % no keys from 'keys' - from

section-subsection par currently in
 end
 currKey = readValue;
 pos2 = ftell(fh); % the last-byte position of the

read key - the total sum of chars read so far
 for ii=1:length(keyInd)
 if strcmpi(keysIn(keyInd(ii),3),readKey) &

~keysLocated(keyInd(ii))
 keysExist(keyInd(ii)) = 1;
 startOffsets(keyInd(ii)) = pos1+1;
 endOffsets(keyInd(ii)) = pos2;
 values{keyInd(ii)} = currKey;
 keysLocated(keyInd(ii)) = 1;
 nKeysLocated = nKeysLocated + 1;
 else
 if ~keysLocated(keyInd(ii))
 startOffsets(keyInd(ii)) = pos2+1;
 endOffsets(keyInd(ii)) = pos2+1;
 end
 end
 end
 if nKeysLocated >= nKeys % if all the keys are located

stop the searching
 break
 end
 else % general text found (even empty

line(s))
 if (status == -1)
 error(['unknown string found at line '

num2str(lineN)]);
 end
 end
 %--- End of searching
 end
 fclose(fh);
catch
 fclose(fh);
 error(['Error parsing the file for keys: ' fileName ': ' lasterr]);
end
%------------------------------------

%------------------------------------

163

function writekeys(fileName,keys,style)
% Writes keys to the section and subsection pair
% If any of the keys doesn't exist, a new key is added to
% the end of the section-subsection pair otherwise the key is updated

(changed).
% Keys is a 4-column cell array of strings.

global NL_CHAR;

RETURN = sprintf('\r');
NEWLINE = sprintf('\n');

[m,n] = size(keys);
if n < 4
 error('Keys to be written are given in an invalid format.');
end

% Get keys position first using findkeys
keysIn = keys;
[secsExist,subSecsExist,keysExist,readValues,so,eo] =

findkeys(fileName,keys(:,1:3));

% Read the whole file's contents out
fh = fopen(fileName,'r');
if fh == -1
 error(['File: ''' fileName ''' does not exist or can not be

opened.']);
end
try
 dataout = fread(fh,'char=>char')';
catch
 fclose(fh);
 error(lasterr);
end
fclose(fh);

%--- Rewriting the file -> writing the refined contents
fh = fopen(fileName,'w');
if fh == -1
 error(['File: ''' fileName ''' does not exist or can not be

opened.']);
end
try
 tab1 = [];
 if strcmpi(style,'tabbed')
 tab1 = sprintf('\t');
 end
 % Proper sorting of keys is cruical at this point in order to avoid
 % inproper key-writing.

 % Find keys with -1 offsets - keys with non-existing section AND
 % subsection - keys that will be added to the end of the file
 fs = length(dataout); % file size in bytes

164

 nAddedKeys = 0;
 ind = find(so==-1);
 if ~isempty(ind)
 so(ind) = (fs+10); % make sure these keys will come to the

end when sorting
 eo(ind) = (fs+10);
 nAddedKeys = length(ind);
 end

 % Sort keys according to start- and end-offsets
 [dummy,ind] = sort(so,1);
 so = so(ind);
 eo = eo(ind);
 keysIn = keysIn(ind,:);
 keysExist = keysExist(ind);
 secsExist = secsExist(ind);
 subSecsExist = subSecsExist(ind);
 readValues = readValues(ind);
 values = keysIn(:,4);

 % Find keys with equal start offset (so) and additionally sort them
 % (locally). These are non-existing keys, including the ones whose
 % section and subsection will also be added.
 nKeys = size(so,1);
 fullInd = 1:nKeys;
 ii = 1;
 while ii < nKeys
 ind = find(so==so(ii));
 if ~isempty(ind) && length(ind) > 1
 n = length(ind);
 from = ind(1);
 to = ind(end);
 tmpKeys = keysIn(ind,:);
 [tmpKeys,ind2] = sortrows(lower(tmpKeys));
 fullInd(from:to) = ind(ind2);
 ii = ii + n;
 else
 ii = ii + 1;
 end
 end

 % Final (re)sorting
 so = so(fullInd);
 eo = eo(fullInd);
 keysIn = keysIn(fullInd,:);
 keysExist = keysExist(fullInd);
 secsExist = secsExist(fullInd);
 subSecsExist = subSecsExist(fullInd);
 readValues = readValues(fullInd);
 values = keysIn(:,4);

 % Refined data - datain
 datain = [];

165

 for ii=1:nKeys % go through all the keys, existing and non-

existing ones
 if ii==1
 from = 1; % from byte-offset of original data (dataout)
 else
 from = eo(ii-1);
 if keysExist(ii-1)
 from = from + 1;
 end
 end
 to = min(so(ii)-1,fs); % to byte-offset of original data

(dataout)

 if ~isempty(dataout)
 datain = [datain dataout(from:to)]; % the lines before

the key
 end

 if length(datain) & (~(datain(end)==RETURN |

datain(end)==NEWLINE))
 datain = [datain, sprintf(NL_CHAR)];
 end

 tab = [];
 if ~keysExist(ii)
 if ~secsExist(ii) && ~isempty(keysIn(ii,1))
 if ~isempty(keysIn{ii,1})
 datain = [datain sprintf(['%s' NL_CHAR],['['

keysIn{ii,1} ']'])];
 end
 % Key-indices with the same section as this, ii-th key

(even empty sections are considered)
 ind = find(strcmpi(keysIn(:,1), keysIn(ii,1)));
 % This section exists at all keys corresponding to the

same section from know on (even the empty ones)
 secsExist(ind) = 1;
 end
 if ~subSecsExist(ii) && ~isempty(keysIn(ii,2))
 if ~isempty(keysIn{ii,2})
 if secsExist(ii); tab = tab1; end;
 datain = [datain sprintf(['%s' NL_CHAR],[tab '{'

keysIn{ii,2} '}'])];
 end
 % Key-indices with the same section AND subsection as

this, ii-th key
 % (even empty sections and subsections are considered)
 ind = find(strcmpi(keysIn(:,1), keysIn(ii,1)) &

strcmpi(keysIn(:,2), keysIn(ii,2)));
 % This subsection exists at all keys corresponding to

the
 % same section and subsection from know on (even the

empty ones)
 subSecsExist(ind) = 1;

166

 end
 end
 if secsExist(ii) & (~isempty(keysIn{ii,1})); tab = tab1; end;
 if subSecsExist(ii) & (~isempty(keysIn{ii,2})); tab = [tab

tab1]; end;
 datain = [datain sprintf(['%s' NL_CHAR],[tab keysIn{ii,3} ' = '

values{ii}])];
 end
 from = eo(ii);
 if keysExist(ii)
 from = from + 1;
 end
 to = length(dataout);
 if from < to
 datain = [datain dataout(from:to)];
 end
 fwrite(fh,datain,'char');
catch
 fclose(fh);
 error(['Error writing keys to file: ''' fileName ''' : ' lasterr]);
end
fclose(fh);
%------------------------------------

%------------------------------------
function deletekeys(fileName,keys)
% Deletes keys and their values out; keys must have at least 3 columns:
% section, subsection, and the key

[m,n] = size(keys);
if n < 3
 error('Keys to be deleted are given in an invalid format.');
end

% Get keys position first
keysIn = keys;
[secsExist,subSecsExist,keysExist,readValues,so,eo] =

findkeys(fileName,keys(:,1:3));

% Read the whole file's contents out
fh = fopen(fileName,'r');
if fh == -1
 error(['File: ''' fileName ''' does not exist or can not be

opened.']);
end
try
 dataout = fread(fh,'char=>char')';
catch
 fclose(fh);
 rethrow(lasterror);
end

167

fclose(fh);

%--- Rewriting the file -> writing the refined content
fh = fopen(fileName,'w');
if fh == -1
 error(['File: ''' fileName ''' does not exist or can not be

opened.']);
end
try
 ind = find(keysExist);
 nExistingKeys = length(ind);
 datain = dataout;

 if nExistingKeys
 % Filtering - retain only the existing keys...
 fs = length(dataout); % file size in bytes
 so = so(ind);
 eo = eo(ind);
 keysIn = keysIn(ind,:);
 % ...and sorting
 [so,ind] = sort(so);
 eo = eo(ind);
 keysIn = keysIn(ind,:);

 % Refined data - datain
 datain = [];

 for ii=1:nExistingKeys % go through all the existing keys
 if ii==1
 from = 1; % from byte-offset of original data

(dataout)
 else
 from = eo(ii-1)+1;
 end
 to = so(ii)-1; % to byte-offset of original data (dataout)

 if ~isempty(dataout)
 datain = [datain dataout(from:to)]; % the lines

before the key
 end
 end
 from = eo(ii)+1;
 to = length(dataout);
 if from < to
 datain = [datain dataout(from:to)];
 end
 end

 fwrite(fh,datain,'char');
catch
 fclose(fh);
 error(['Error deleting keys from file: ''' fileName ''' : '

lasterr]);

168

end
fclose(fh);
%------------------------------------

%------------------------------------
function [keys,sections,subsections] = readallkeys(fileName)
% Reads all the keys out as well as the sections and subsections

keys = [];
sections = [];
subsections = [];
% Read the whole file's contents out
try
 dataout = textread(fileName,'%s','delimiter','\n');
catch
 error(['File: ''' fileName ''' does not exist or can not be

opened.']);
end
nLines = size(dataout,1);

% Go through all the lines and construct the keys variable
keys = cell(nLines,4);
sections = cell(nLines,1);
subsections = cell(nLines,2);
keyN = 0;
secN = 0;
subsecN = 0;
secStr = '';
subsecStr = '';
for ii=1:nLines
 [status,value,key] = processiniline(dataout{ii});
 if status == 1
 secN = secN + 1;
 secStr = value;
 sections(secN) = {secStr};
 elseif status == 2
 subsecN = subsecN + 1;
 subsecStr = value;
 subsections(subsecN,:) = {secStr,subsecStr};
 elseif status == 3
 keyN = keyN + 1;
 keys(keyN,:) = {secStr,subsecStr,key,value};
 end
end
keys(keyN+1:end,:) = [];
sections(secN+1:end,:) = [];
subsections(subsecN+1:end,:) = [];
%------------------------------------

169

%------------------------------------
function [status,value,key] = processiniline(line)
% Processes a line read from the ini file and
% returns the following values:
% - status: -1 => unknown string found
% 0 => empty line found
% 1 => section found
% 2 => subsection found
% 3 => key-value pair found
% 4 => comment line found (starting with ;)
% - value: value-string of a key, section, subsection, comment, or

unknown string
% - key: key as string

status = 0;
value = [];
key = [];
line = strim(line); % removes any leading and

trailing spaces
if isempty(line) % empty line
 return
end
if strcmpi(line(1),';') % comment found
 status = 4;
 value = line(2:end);
elseif (line(1) == '[') & (line(end) == ']') & (length(line) >= 3) %

section found
 value = lower(line(2:end-1));
 status = 1;
elseif (line(1) == '{') &... % subsection found
 (line(end) == '}') & (length(line) >= 3)
 value = lower(line(2:end-1));
 status = 2;
else % either key-value pair or

unknown string
 pos = findstr(line,'=');
 if ~isempty(pos) % key-value pair found
 status = 3;
 key = lower(line(1:pos-1));
 value = line(pos+1:end);
 key = strim(key); % removes any leading and

trailing spaces
 value = strim(value); % removes any leading and

trailing spaces
 if isempty(key) % empty keys are not

allowed
 status = 0;
 key = [];
 value = [];
 end
 else % unknown string found
 status = -1;
 value = line;

170

 end
end

%------------------------------------
function outstr = strim(str)
% Removes leading and trailing spaces (spaces, tabs, endlines,...)
% from the str string.
if isnumeric(str);
 outstr = str;
 return
end
ind = find(~isspace(str)); % indices of the non-space

characters in the str
if isempty(ind)
 outstr = [];
else
 outstr = str(ind(1):ind(end));
end

%------------------------------------
function cs = cellstrings(m,n)
% Creates a m x n cell array of empty strings - ''
cs = cell(m,n);
cs(:) = {''};

%------------------------------------
function y = n2s(x)
% Converts numeric matrix to string representation.
% Example: x given as [1 2;3 4] returns y = '1,2;3;4'
if ischar(x) | isempty(x)
 y = x;
 return
end
[m,n] = size(x);
y = [num2str(x(1,:),'%15.6g')];
for ii=2:m
 y = [y ';' num2str(x(ii,:),'%15.6g')];
end

171

GazePointApi:

% Gazepoint Function
%Made by TRevor Craig
%Started 5/17/2016 at 1:08 PM
% This function handles the data from the gazepoint

function [TrueX,TrueY]=GazePointApi(Calibration,TotalBlinktime)

%% Setting up the socket
delay=15;
counter=1;
% Blinkcouter=1;%How long the blink counts for
% TotalBlinktime=8; %This should be adjust for blink length beyond

unintentail
% Calibration=2;
ip = '127.0.0.1';
portnum = 4242; %This may need to be adjusted based on what the current

setting is
InputBufferSize=4096;
obj.ip_address=ip;
obj.port_number = portnum;
obj.client_socket = tcpip(obj.ip_address, obj.port_number);
set(obj.client_socket, 'InputBufferSize', InputBufferSize);
obj.client_socket.Terminator = 'CR/LF';
gazepoint_info = strcat('Connected to:', obj.ip_address, ' on port:',

num2str(obj.port_number), '\n');

%% Open the socket
fopen(obj.client_socket);% This opens the camera connection
fprintf(gazepoint_info);

%% Calibaration
if Calibration==1
 fprintf(obj.client_socket, '<SET ID="CALIBRATE_SHOW" STATE="1"

/>');
 fprintf(obj.client_socket, '<SET ID="CALIBRATE_START" STATE="1"

/>');
 pause(delay);
 fprintf(obj.client_socket, '<SET ID="CALIBRATE_SHOW" STATE="0"

/>');
 fprintf(obj.client_socket, '<SET ID="CALIBRATE_START" STATE="0"

/>');
 fprintf(obj.client_socket, '<GET ID="CALIBRATE_RESULT_SUMMARY"

/>');
 fprintf(obj.client_socket, '<SET ID="ENABLE_SEND_DATA" STATE="0"

/>');
 while (get(obj.client_socket, 'BytesAvailable') > 0)
 results = fscanf(obj.client_socket);
 %Sample of returns <CAL ID="CALIB_START_PT" PT="5"

CALX="0.1500" CALY="0.1500" />

172

 CALIXNum = strfind(results, 'CALX="');
 CALIYNum = strfind(results, 'CALY="');
 if ((~isempty(CALIXNum))&&(~isempty(CALIYNum)));

Calix(counter)=str2double(results((CALIXNum+6):(CALIXNum+5+6)));

Caliy(counter)=str2double(results((CALIYNum+6):(CALIYNum+5+6)));
 counter=counter+1;
 end
 pause(.01);
 end
 fprintf(obj.client_socket, '<SET ID="ENABLE_SEND_DATA" STATE="1"

/>');
 fclose(obj.client_socket); %This closes the port
end

%% POG Data Extraction
if(Calibration==2)
 POGV=1;
 fprintf(obj.client_socket, '<SET ID="ENABLE_SEND_DATA" STATE="0"

/>');
 fprintf(obj.client_socket, '<SET ID="ENABLE_SEND_DATA" STATE="1"

/>');
 counter=1;
 fprintf(obj.client_socket, '<SET ID="ENABLE_SEND_POG_FIX" STATE="1"

/>');
 pause(1);%This pause is needed to send all the commands

 while (get(obj.client_socket, 'BytesAvailable') > 0)
 data = fscanf(obj.client_socket);
 POGXNum = strfind(data, 'FPOGX="');
 POGYNum = strfind(data, 'FPOGY="');
 POGVNUM = strfind(data, 'FPOGV="');
 if ((~isempty(POGXNum))&&(~isempty(POGYNum)));
 POGx(counter)=str2double(data((POGXNum+7):(POGXNum+7+6)));
 POGy(counter)=str2double(data((POGYNum+7):(POGYNum+7+6)));
 counter=counter+1;
 end
 if(~isempty(POGVNUM))
 POGV=int32(str2double(data(POGVNUM+7)));
 end
 pause(0.01);
 if POGV==1
 Blinkcouter=1;
 end
 if POGV==0
 Blinkcouter=Blinkcouter+1;
 end
 if Blinkcouter>=TotalBlinktime
 %This line is what makes it last forever so put theis in

the whileloop to stop it
 fprintf(obj.client_socket, '<SET ID="ENABLE_SEND_DATA"

STATE="0"/>');%This line is what makes it last forever so put theis in

the whileloop to stop it

173

 break;
 end
 end
 fprintf(obj.client_socket, '<SET ID="ENABLE_SEND_DATA" STATE="1"

/>');
 disp('PROGRAM STOPPED');
 %% Closes the Connection and then free everything UP!
 fclose(obj.client_socket); %This closes the port

 %% Display the results
 % screensize=[1400,900];
 screensize=[700,450];
 % fillmatrix=zeros(screensize(2),screensize(1));
 counter=1;
 for i=1:numel(POGx)
 x=int32(POGx(i)*screensize(1));
 y=int32(POGy(i)*screensize(2));
 if((x>0)&&(y>0))
 if((x<screensize(1))&&(y<screensize(2)))
 TrueX(counter)=x;
 TrueY(counter)=y;
 counter=counter+1;
 % fillmatrix(y,x)=255;
 end
 end
 end
 % fillmatrix=zeros(450,700);
 % for i=1:numel(TrueX);
 % fillmatrix(TrueY(i),TrueX(i))=255;
 % end
 % imshow(fillmatrix);
end

end

174

FindtheCenter.m:

%% This is a function used to find the center of an enclosed object
%Made by TRevor Craig
%Started 4/27/2016 at 3:37 pm

function [position]=FindtheCenter(x1,y1,option)
if option==1
 %% Mean Technique
 % Mean Method
 centerx=mean(x1);
 centery=mean(y1);
 position=int32([centerx,centery]);
end
%% Filled Centroid Option
if option==2
 FilledImg=zeros((max(x1)-(min(x1))),(max(y1)-min(y1)));
 ConnectPoints=zeros(2*(numel(x1)+1),1);
 for k=1:numel(x1)
 FilledImg(int32(y1(k)),int32(x1(k)))=255;%This can probably be

removed
 ConnectPoints(((2*k)-1))=int32(x1(k));
 ConnectPoints(2*k)=int32(y1(k));
 end
 k=k+1;
 ConnectPoints(((2*k)-1))=int32(x1(1));
 ConnectPoints(2*k)=int32(y1(1));
 ConnectPoints=transpose(ConnectPoints);
 shape='Line';
 LineWidth=1;
 color='red';
 ConnectedImage=insertShape(FilledImg,shape,ConnectPoints,'color',

color,'LineWidth',LineWidth);
 ConnectedImage=im2double(im2bw(ConnectedImage,.1));
 FilledImg=ConnectedImage;
 FilledImg=imfill(FilledImg,'holes');
 % Centroid Method
 s = regionprops(FilledImg, 'centroid');
 centroids = cat(1, s.Centroid);
 centerx=int32(centroids(1));
 centery=int32(centroids(2));
 position=int32([centerx,centery]);
end

175

DataFilter.m:

% My own Data filter program.
%Made by TRevor Craig
%Started 5/17/2016 at 2:04 PM
% This function filters out messy data
function [truefX,truefY]=DataFilter(x1,y1,position,PercentAvg)
stdx=std(double(x1));
stdy=std(double(y1));
NumtoAverage=int32((numel(x1)/PercentAvg));
count=1;
for i=1:numel(x1)
 if (((abs(x1(i)-position(1)))<=(1.5)*stdx)&&((abs(y1(i)-

position(2)))<=(1.5)*stdy))
 tfX(count)=x1(i);
 tfY(count)=y1(i);
 count=count+1;
 end
end

for i=1:numel(tfX)-NumtoAverage
 truefX(i)=int32((sum(tfX(i:i+NumtoAverage)))/NumtoAverage);
 truefY(i)=int32((sum(tfY(i:i+NumtoAverage)))/NumtoAverage);
end
end

176

ShapeRecognFnc.m:

% Shape Recognizition Function
% This is based all off Shape Recogn
% This will open an image and see if a program can detect the shape
%Made by TRevor Craig
%Started 5/26/2016 at 11:15 am

function [shape,Value]=ShapeRecognFnc(x1,y1,position)

%% The opener
filename='Images\Image1.JPG';
inifilename='config\Settings.ini';
inputimage=imread(filename);
imsize=size(inputimage);

% %% Importing data if Reading from tables
% if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'DataTableRead','ON

OFF','Data','','ERR'}),'''','')))
%

TestNUM=cell2mat(inifile(inifilename,'read',{'DataTableRead','CurrentTe

st','TESTNUM','d','ERR'}));
% if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'DataTableRead','MA

SSTESER','Tester','','ERR'}),'''','')))
%

TestNUM=cell2mat(inifile(inifilename,'read',{'DataTableRead','MASSTESER

','mintest','d','ERR'}));
% mintest=TestNUM;
%

maxtest=cell2mat(inifile(inifilename,'read',{'DataTableRead','MASSTESER

','maxtest','d','ERR'}));
% NSPSE=zeros(maxtest-mintest+1,3);
% NPercentages=zeros(maxtest-mintest+1,3);
% NCorners=zeros(maxtest-mintest+1,4);
% Nmedval=zeros(maxtest-mintest+1,1);
% NAreanormscale=zeros(maxtest-mintest+1,3);
% NFUllNormMeanDiff=zeros(maxtest-mintest+1,3);
% NTotalSlopes=zeros(maxtest-mintest+1,3);
% WildCorners=zeros(maxtest-mintest+1,3);
% end
% end
%% Giant FOR LOOP FOR MASS TESTING
% currentTest=1;

% %% Eye Based Test
% if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'GazePointAPI','Use

EyeGaze','Data','','ERR'}),'''','')))

177

%

Calibration=cell2mat(inifile(inifilename,'read',{'GazePointAPI','Calibr

ation','Calibrate','d','ERR'})); %Set Calibration to 1 for test
%

TotalBlinktime=cell2mat(inifile(inifilename,'read',{'GazePointAPI','Cal

ibration','TotalBlinktime','d','ERR'}));%Reccomended setting is to be 8
% [tx1,ty1]=GazePointApi(Calibration,TotalBlinktime);
% [position]=FindtheCenter(tx1,ty1,2); %Multiple options for What

center technique is used
%

NumAvG=cell2mat(inifile(inifilename,'read',{'DataFilter','NumbertoAvg',

'Number','d','ERR'}));
% [x1,y1]=DataFilter(tx1,ty1,position,NumAvG); %Standarddeviation

filter with average sum
%
% end

% for TestNUM=mintest:maxtest

 FillMatrix=zeros(imsize(1),imsize(2));
 %% The gaze selected object with a click in this case
% if

strcmp('OFF',char(strrep(inifile(inifilename,'read',{'DataTableRead','O

N OFF','Data','','ERR'}),'''','')))
% figure;
% imshow(inputimage);
% if

strcmp('OFF',char(strrep(inifile(inifilename,'read',{'GazePointAPI','Us

eEyeGaze','Data','','ERR'}),'''','')))
% [x,y,button] = ginput(1);
% position=[x,y];
% end
% color='red';
% end
% if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'DataTableRead','ON

OFF','Data','','ERR'}),'''','')))
% figure;
% imshow(inputimage);
%
% [position,x1,y1]=TrialTableRead(TestNUM);
% x=position(1);
% y=position(2);
% color='red';
% end

 sizes=cell2mat(inifile(inifilename,'read',{'ShapeRecogn','Augmented

Shape','Markersize','d','ERR'}));
 %% Marking the selected object
 if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Augm

ented Shape','Marker','','ERR'}),'''','')));
 color='red';

178

 MarkedImage = insertMarker(inputimage,position,'color', color,

'size',sizes);
% imshow(MarkedImage);

LineWidth=cell2mat(inifile(inifilename,'read',{'ShapeRecogn','Augmented

Shape','LineWidth','d','ERR'}));
 else
 MarkedImage=inputimage;
 end

 %% Adding shapes to the image to see better(circle first)
 if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Augm

ented Shape','Circle','','ERR'}),'''','')));

LineWidth=cell2mat(inifile(inifilename,'read',{'ShapeRecogn','Augmented

Shape','LineWidth','d','ERR'}));
 shape='circle';

radius=cell2mat(inifile(inifilename,'read',{'ShapeRecogn','Augmented

Shape','radius','d','ERR'}));
 cposition=[position,radius];
 ShapedImage=insertShape(MarkedImage,shape,cposition,'color',

color,'LineWidth',LineWidth);
% imshow(ShapedImage);
 else
 ShapedImage=MarkedImage;

radius=cell2mat(inifile(inifilename,'read',{'ShapeRecogn','Augmented

Shape','radius','d','ERR'}));
 %Note the radius is also the minimum value that you can draw

the shape
 %so be sure to make a radius that is appropriate for the image
 end

 %% Adding shapes to the image to see better(square second)
 if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Augm

ented Shape','Square','','ERR'}),'''','')));
 shape='Rectangle';

radius=cell2mat(inifile(inifilename,'read',{'ShapeRecogn','Augmented

Shape','radius','d','ERR'}));

LineWidth=cell2mat(inifile(inifilename,'read',{'ShapeRecogn','Augmented

Shape','LineWidth','d','ERR'}));
 width=2*radius;
 height=width;
 sposition=[(position(1)-width/2),(position(2)-

width/2),width,height];
 ShapedImage=insertShape(ShapedImage,shape,sposition,'color',

color,'LineWidth',LineWidth);
% imshow(ShapedImage);

179

 end

 %% Adding shapes to the image to see better(triangle third)
 if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Augm

ented Shape','Triangle','','ERR'}),'''','')));
 shape='Line';

radius=cell2mat(inifile(inifilename,'read',{'ShapeRecogn','Augmented

Shape','radius','d','ERR'}));

LineWidth=cell2mat(inifile(inifilename,'read',{'ShapeRecogn','Augmented

Shape','LineWidth','d','ERR'}));
 Point1=[(position(1)),(position(2)-radius)];
 Point2=[(position(1)-

int32(radius*(cos(degtorad(30.0))))),(position(2)+int32(radius*sin(degt

orad(30))))];

Point3=[(position(1)+int32(radius*(cos(degtorad(30.0))))),(position(2)+

int32(radius*sin(degtorad(30))))];
 triangleposition=[Point1,Point2,Point3,Point1];

ShapedImage=insertShape(ShapedImage,shape,triangleposition,'color',

color,'LineWidth',LineWidth);
% imshow(ShapedImage);
 end

 %% Tracking Mouse Around Screen
 % Directions.
 % Left click to start tracking
 % Right click to end tracking
% if

strcmp('OFF',char(strrep(inifile(inifilename,'read',{'DataTableRead','O

N OFF','Data','','ERR'}),'''','')))
% if

strcmp('OFF',char(strrep(inifile(inifilename,'read',{'GazePointAPI','Us

eEyeGaze','Data','','ERR'}),'''','')))
% [hand,x1,y1]=freehanddraw();
% end
% end

 %% Draw the values on our picture.
 for i=1:numel(x1)
 FillMatrix(int32(y1(i)),int32(x1(i)))=255;
 end
% figure;
% WithMark=insertMarker(FillMatrix,position,'color', color,

'size',sizes);
% imshow(WithMark); % Added this to see better if the shape was in

the correct spot
 %% finding the max and min values for the shape scanner to stop
 bounds=16;

180

 distances=[abs(position(1)-max(x1)),abs(position(1)-

min(x1)),abs(position(2)-max(y1)),abs(position(2)-min(y1))];
 stoppingpoint=int32((max(distances))/(bounds));

[CircleResutls,SquareResults,TriangleResults]=ShapeScanner(position,rad

ius,bounds,FillMatrix,stoppingpoint);

 %% Finding the percentages for each point
 [PercentCircle,Cradius]=max(CircleResutls(1:stoppingpoint,2));
 Cradius=CircleResutls(Cradius,1);
 [PercentSquare,Sradius]=max(SquareResults(1:stoppingpoint,2));
 Sradius=SquareResults(Sradius,1);
 [PercentTriangle,Tradius]=max(TriangleResults(1:stoppingpoint,2));
 Tradius=TriangleResults(Tradius,1);
 PercentCircle=PercentCircle/numel(x1);
 PercentSquare=PercentSquare/numel(x1);
 PercentTriangle=PercentTriangle/numel(x1);
 Percentages=[PercentCircle,PercentSquare,PercentTriangle];

 %Cool to see each percentage
 if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Disp

Results','Percentages','','ERR'}),'''','')));
 disp(Percentages);
 end
 %To Make a results file
 if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Crea

te Results File','ResultsFile','','ERR'}),'''','')));
 ResultsfileName='Results\Results.ini';
 inifile(ResultsfileName,'new');
 ResultsTitle='ShapeRecogn Results';

CwriteKeys={ResultsTitle,'Percentages','Circle',Percentages(1),'plain'}

;

SwriteKeys={ResultsTitle,'Percentages','Square',Percentages(2),'plain'}

;

TwriteKeys={ResultsTitle,'Percentages','Triangles',Percentages(3),'plai

n'};
 inifile(ResultsfileName,'write',CwriteKeys);
 inifile(ResultsfileName,'write',SwriteKeys);
 inifile(ResultsfileName,'write',TwriteKeys);
 end

 %% Corner Detection

[NumofCorners,SuccessCircleCorner,SuccessSquareCorner,SuccessTriangleCo

rner]=CornerDetection(position,bounds,x1,y1,FillMatrix,Cradius,Sradius,

Tradius);

181

 if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Disp

Results','NUMOFCORNERS','','ERR'}),'''','')));

disp([SuccessCircleCorner,SuccessSquareCorner,SuccessTriangleCorner]);
 end

 if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Crea

te Results File','ResultsFile','','ERR'}),'''','')));

CwriteKeys={ResultsTitle,'Corner','Circle',SuccessCircleCorner,'plain'}

;

SwriteKeys={ResultsTitle,'Corner','Square',SuccessSquareCorner,'plain'}

;

TwriteKeys={ResultsTitle,'Corner','Triangles',SuccessTriangleCorner,'pl

ain'};
 inifile(ResultsfileName,'write',CwriteKeys);
 inifile(ResultsfileName,'write',SwriteKeys);
 inifile(ResultsfileName,'write',TwriteKeys);
 end

 %% This is all the Shape detect code.

[Cscale,Sscale,Tscale,medval,Areanormscale,FUllNormMeanDiff,TotalSlopes

]=ShapeDetect(x1,y1,FillMatrix,Cradius,Sradius,Tradius,position);

 %% This code sumarizes all of the other programs and uses "fuzzy

logic" to decide which choice to do.
 %This mode is very accurate over all so want it to be
 %powerful. THis may need to be adjusted to account for the values

in the
 %other function.
 Scaler=cell2mat(inifile(inifilename,'read',{'ShapeRecogn','Weighted

Percentage','Scalar','d','ERR'}));

SPSE=[Scaler*Percentages(1),Scaler*Percentages(2),Scaler*Percentages(3)

];

 %This process is to place the corner results into weights.
 currentTest=1;

 if

SuccessCircleCorner>=cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','LOWCIRCLE','d','ERR'}))
 if

SuccessCircleCorner>=cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','HIGHCIRCLE','d','ERR'}))

182

SPSE(1)=SPSE(1)+cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','HWEIGHT','d','ERR'}));

WildCorners(currentTest,1)=cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','HWEIGHT','d','ERR'}));
 else

SPSE(1)=SPSE(1)+cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','LWEIGHT','d','ERR'}));

WildCorners(currentTest,1)=cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','LWEIGHT','d','ERR'}));
 end
 end

 if

SuccessSquareCorner>=cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','LOWSQUARE','d','ERR'}))
 if

SuccessSquareCorner>=cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','HIGHSQUARE','d','ERR'}))

SPSE(2)=SPSE(2)+cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','HWEIGHT','d','ERR'}));

WildCorners(currentTest,2)=cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','HWEIGHT','d','ERR'}));
 else

SPSE(2)=SPSE(2)+cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','LWEIGHT','d','ERR'}));

WildCorners(currentTest,2)=cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','LWEIGHT','d','ERR'}));
 end
 end

 if

SuccessTriangleCorner>=cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','LOWTRIANGLE','d','ERR'}))
 if

SuccessTriangleCorner>=cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','HIGHTRIANGLE','d','ERR'}))

SPSE(3)=SPSE(3)+cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','HWEIGHT','d','ERR'}));

WildCorners(currentTest,3)=cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','HWEIGHT','d','ERR'}));
 else

SPSE(3)=SPSE(3)+cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','LWEIGHT','d','ERR'}));

183

WildCorners(currentTest,3)=cell2mat(inifile(inifilename,'read',{'Corner

Detection','SPSE WEIGHTS','LWEIGHT','d','ERR'}));
 end
 end

 %The shape algorith results in SPSE format
 SPSE(1)=SPSE(1)+Cscale;
 SPSE(2)=SPSE(2)+Sscale;
 SPSE(3)=SPSE(3)+Tscale;

 if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Disp

Results','SPSE','','ERR'}),'''','')));
 disp(SPSE);
 end

 if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Crea

te Results File','ResultsFile','','ERR'}),'''','')));
 writeKeys={ResultsTitle,'SPSE','ALL THE RESULTS',SPSE,'plain'};
 inifile(ResultsfileName,'write',writeKeys);
 end

 [Value,Index] = max(SPSE);
 if Value<9 %This might need to be adjusted
 disp('No shape found');
 end

 if Value>=9
 if Index==1
 shape='Circle';
 end
 if Index==2
 shape='Square';
 end
 if Index==3
 shape='Triangle';
 end

 disp(['Shape was found to be a ',shape, ' with

',num2str(Value),' SPSE']);
 end

end

184

ShapeScanner.m:

function

[CircleResutls,SquareResults,TriangleResults]=ShapeScanner(position,rad

ius,bounds,FillMatrix,stoppingpoint)
imsize=size(FillMatrix);
CircleResutls=zeros(stoppingpoint,2);
SquareResults=CircleResutls;
TriangleResults=CircleResutls;
 for i=1:stoppingpoint

[HighBounds,LowBounds,DrawnShapeMOD]=FilterMaker('circle',position,radi

us+(bounds*i-bounds),FillMatrix,bounds);

SuccesfulPoints1=SuccessFilter(imsize,HighBounds,LowBounds,DrawnShapeMO

D);
 CircleResutls(i,1:2)=[radius+(bounds*i-

bounds),SuccesfulPoints1];

[HighBounds2,LowBounds2,DrawnShapeMOD2]=FilterMaker('Rectangle',positio

n,radius+(bounds*i-bounds),FillMatrix,bounds);

SuccesfulPoints2=SuccessFilter(imsize,HighBounds2,LowBounds2,DrawnShape

MOD2);
 SquareResults(i,1:2)=[radius+(bounds*i-

bounds),SuccesfulPoints2];

[HighBounds3,LowBounds3,DrawnShapeMOD3]=FilterMaker('triangle',position

,radius+(bounds*i-bounds),FillMatrix,bounds);

SuccesfulPoints3=SuccessFilter(imsize,HighBounds3,LowBounds3,DrawnShape

MOD3);
 TriangleResults(i,1:2)=[radius+(bounds*i-

bounds),SuccesfulPoints3];
 end
end

185

CornerDetection.m:

function

[NumofCorners,SuccessCircleCorner,SuccessSquareCorner,SuccessTriangleCo

rner]=CornerDetection(position,bounds,x1,y1,FillMatrix,Cradius,Sradius,

Tradius)
inifilename='config\Settings.ini';
ConnectPoints=zeros(2*(numel(x1)+1),1);
for k=1:numel(x1)
 FillMatrix(int32(y1(k)),int32(x1(k)))=255;
 ConnectPoints(((2*k)-1))=int32(x1(k));
 ConnectPoints(2*k)=int32(y1(k));
end
k=k+1;
ConnectPoints(((2*k)-1))=int32(x1(1));
ConnectPoints(2*k)=int32(y1(1));

ConnectPoints=transpose(ConnectPoints);
position=double(position);

%% Connect all the points
shape='Line';
LineWidth=1;
color='red';
ConnectedImage=insertShape(FillMatrix,shape,ConnectPoints,'color',

color,'LineWidth',LineWidth);
ConnectedImage=im2double(im2bw(ConnectedImage,.1));
FillMatrix=ConnectedImage;

%% Corner results
CornerResults=corner(FillMatrix,'Harris',cell2mat(inifile(inifilename,'

read',{'Corner

Detection','Harris','MaxCorners','d','ERR'})),'QualityLevel',cell2mat(i

nifile(inifilename,'read',{'Corner

Detection','Harris','QualityLevel','d','ERR'})),'SensitivityFactor',cel

l2mat(inifile(inifilename,'read',{'Corner

Detection','Harris','SensitivityFactor','d','ERR'}))); %This should be

twice the amount of corners

%% Find all the corners
%Deconstruct Square Raidus to Find Corners
SCorners=[position(1)-Sradius,position(2)-Sradius;
 position(1)-Sradius,position(2)+Sradius;
 position(1)+Sradius,position(2)-Sradius;
 position(1)+Sradius,position(2)+Sradius];

%Deconstruct Triangle Raidus to Find Corners
TCorners=[(position(1)),(position(2)-Tradius);
 (position(1)-

int32(Tradius*(cos(degtorad(30.0))))),(position(2)+int32(Tradius*sin(de

gtorad(30))));

186

(position(1)+int32(Tradius*(cos(degtorad(30.0))))),(position(2)+int32(T

radius*sin(degtorad(30))))];

SuccessCircleCorner=0;
SuccessSquareCorner=0;
SuccessTriangleCorner=0;
NumofCorners=numel(CornerResults(:,1));
for g=1:NumofCorners
 %The circle Part
 temp0=sqrt(((abs(position(1)-

CornerResults(g,1)))^2)+(abs(position(2)-CornerResults(g,2))^2));
 temp0=abs(Cradius-temp0);
 if temp0<bounds
 SuccessCircleCorner=SuccessCircleCorner+1;
 end
 %The Square part
 for z=1:4
 temp1=abs(CornerResults(g,1)-SCorners(z,1));
 temp2=abs(CornerResults(g,2)-SCorners(z,2));
 if((temp1<(bounds))&& (temp2<(bounds)))
 SuccessSquareCorner=SuccessSquareCorner+1;
 end
 end
 %The Triangle Part
 for y=1:3
 temp1=abs(CornerResults(g,1)-TCorners(y,1));
 temp2=abs(CornerResults(g,2)-TCorners(y,2));
 if((temp1<(bounds))&& (temp2<(bounds)))
 SuccessTriangleCorner=SuccessTriangleCorner+1;
 end
 end
end
end

187

ShapeDetect.m:

function

[CTransfer,STransfer,TTransfer,medval,Areanormscale,FUllNormMeanDiff,To

talSlopes]=ShapeDetect(x1,y1,FillMatrix,Cradius,Sradius,Tradius,positio

n)
SPSE=[0,0,0];
inifilename='config\Settings.ini';
UseDataSet=char(strrep(inifile(inifilename,'read',{'ShapeDetect','DataS

et Options','UseDataSet','','ERR'}),'''',''));

%% OLD TEST STUFF BUT HELPFUL to make it more stand alone
ConnectPoints=zeros(2*(numel(x1)+1),1);

for k=1:numel(x1)
 FillMatrix(int32(y1(k)),int32(x1(k)))=255;
 ConnectPoints(((2*k)-1))=int32(x1(k));
 ConnectPoints(2*k)=int32(y1(k));
end
k=k+1;
ConnectPoints(((2*k)-1))=int32(x1(1));
ConnectPoints(2*k)=int32(y1(1));

ConnectPoints=transpose(ConnectPoints);

%Connect all the points
shape='Line';
LineWidth=1;
color='red';
ConnectedImage=insertShape(FillMatrix,shape,ConnectPoints,'color',

color,'LineWidth',LineWidth);
ConnectedImage=im2double(im2bw(ConnectedImage,.1));
FillMatrix=ConnectedImage;

%% previous test
ImageShape=imfill(FillMatrix,'holes');

BW = im2bw(ImageShape, .1);
[H,~,~] = hough(BW,'RhoResolution',0.5,'ThetaResolution',0.5);

data=zeros(max(max(H)),1);
for cnt = 1:max(max(H))
 data(cnt) = sum(sum(H == cnt));
end

medval = median(data);

if (medval>=0)&&(medval<170)
 shape='TRIANGLE';

188

SPSE(3)=cell2mat(inifile(inifilename,'read',{'ShapeDetect','MEDVAL','BE

STWEIGHT','d','ERR'}));

SPSE(2)=cell2mat(inifile(inifilename,'read',{'ShapeDetect','MEDVAL','OT

HERWEIGHT','d','ERR'}));

SPSE(1)=cell2mat(inifile(inifilename,'read',{'ShapeDetect','MEDVAL','OT

HERWEIGHT','d','ERR'}));
end

if (medval>=170)&&(medval<680)
 shape='CIRCLE';

SPSE(3)=cell2mat(inifile(inifilename,'read',{'ShapeDetect','MEDVAL','OT

HERWEIGHT','d','ERR'}));

SPSE(2)=cell2mat(inifile(inifilename,'read',{'ShapeDetect','MEDVAL','OT

HERWEIGHT','d','ERR'}));

SPSE(1)=cell2mat(inifile(inifilename,'read',{'ShapeDetect','MEDVAL','BE

STWEIGHT','d','ERR'}));
end

if (medval>=680)
 shape='SQUARE';

SPSE(3)=cell2mat(inifile(inifilename,'read',{'ShapeDetect','MEDVAL','OT

HERWEIGHT','d','ERR'}));

SPSE(2)=cell2mat(inifile(inifilename,'read',{'ShapeDetect','MEDVAL','BE

STWEIGHT','d','ERR'}));

SPSE(1)=cell2mat(inifile(inifilename,'read',{'ShapeDetect','MEDVAL','OT

HERWEIGHT','d','ERR'}));
end
if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeDetect','Disp

Results','medval','','ERR'}),'''','')))
 disp(['Shape was found to be a ',shape, ' with ',num2str(medval),'

MedValue!']);
end

if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Crea

te Results File','ResultsFile','','ERR'}),'''','')));
 ResultsTitle='ShapeRecogn Results';
 ResultsfileName='Results\Results.ini';
 WriteKeys={ResultsTitle,'MEDVAL','Number',medval,'plain'};
 inifile(ResultsfileName,'write',WriteKeys);
end

189

%% Try plotting a perfect result and force fitting the result to the

other one
%this is in the hopes of making perfect data to compare the two plots
%without guessing.
if strcmp(UseDataSet,'ON')
 [Cdata,Sdata,Tdata]=HoughAssist(Cradius,Sradius,Tradius);
end

if strcmp(UseDataSet,'OFF')
 imsize=size(FillMatrix);
 Cplot=zeros(imsize(1),imsize(2),1);
 Splot=zeros(imsize(1),imsize(2),1);
 Tplot=zeros(imsize(1),imsize(2),1);

 %Creating Circle First
 shape='circle';
 cposition=[position,Cradius];
 LineWidth=1;
 Cplot=insertShape(Cplot,shape,cposition,'color',

color,'LineWidth',LineWidth);
 Cplot = im2bw(Cplot, .1);
 Cplot=imfill(Cplot,'holes');

 % Adding shapes to the image (square second)
 shape='Rectangle';
 width=2*Sradius;
 height=width;
 sposition=[(position(1)-width/2),(position(2)-

width/2),width,height];
 LineWidth=1;
 Splot=insertShape(Splot,shape,sposition,'color',

color,'LineWidth',LineWidth);
 Splot = im2bw(Splot, .1);
 Splot=imfill(Splot,'holes');

 % Adding shapes to the image to see better(triangle third)
 shape='Line';
 Point1=[(position(1)),(position(2)-Tradius)];
 Point2=[(position(1)-

int32(Tradius*(cos(degtorad(30.0))))),(position(2)+int32(Tradius*sin(de

gtorad(30))))];

Point3=[(position(1)+int32(Tradius*(cos(degtorad(30.0))))),(position(2)

+int32(Tradius*sin(degtorad(30))))];
 triangleposition=[Point1,Point2,Point3,Point1];
 LineWidth=1;
 Tplot=insertShape(Tplot,shape,triangleposition,'color',

color,'LineWidth',LineWidth);
 Tplot = im2bw(Tplot, .1);
 Tplot=imfill(Tplot,'holes');

 %Do all the hough calculations
 [CH,~,~] = hough(Cplot,'RhoResolution',0.5,'ThetaResolution',0.5);

190

 [SH,~,~] = hough(Splot,'RhoResolution',0.5,'ThetaResolution',0.5);
 [TH,~,~] = hough(Tplot,'RhoResolution',0.5,'ThetaResolution',0.5);

 for cnt = 1:max(max(CH))
 Cdata(cnt) = sum(sum(CH == cnt));
 end
 for cnt = 1:max(max(SH))
 Sdata(cnt) = sum(sum(SH == cnt));
 end
 for cnt = 1:max(max(TH))
 Tdata(cnt) = sum(sum(TH == cnt));
 end
end
%% Plotting tools
% plot(data,'.');
% hold on;
% plot(Tdata,'-');
% pbaspect([1 .55 1]);
% xlabel('Hough Matrix Intensity'), ylabel('Counts');
% title('Idealized Triangle Shape vs Actual Input');
% legend('User Input','Idealized Shape');
% line([Tradius,Tradius],ylim);
% ootherguess=int32(Tradius/tan(deg2rad(60)));
% line([ootherguess,ootherguess],ylim);
% halfguess=ootherguess+((Tradius-ootherguess)/3);
% line([halfguess,halfguess],ylim);

%This is done to find the area under the curve and see which one is the
%closest fit for the program.
SampCUM = cumtrapz(data);
SampSUM=SampCUM(numel(data));

CCUM = cumtrapz(Cdata);
CSUM=CCUM(numel(Cdata));

SCUM = cumtrapz(Sdata);
SSUM=SCUM(numel(Sdata));

TCUM =cumtrapz(Tdata);
TSUM=TCUM(numel(Tdata));

Cdiff=abs(SampSUM-CSUM);
Sdiff=abs(SampSUM-SSUM);
Tdiff=abs(SampSUM-TSUM);
Differnces=[Cdiff,Sdiff,Tdiff];

normDiffernces=Differnces/norm(Differnces);
AreaScale=cell2mat(inifile(inifilename,'read',{'ShapeDetect','Differnt

Area','Scale','d','ERR'}));
Areanormscale=[AreaScale*(1-normDiffernces(1)),AreaScale*(1-

normDiffernces(2)),AreaScale*(1-normDiffernces(3))];
SPSE(1)=SPSE(1)+AreaScale*(1-normDiffernces(1));
SPSE(2)=SPSE(2)+AreaScale*(1-normDiffernces(2));

191

SPSE(3)=SPSE(3)+AreaScale*(1-normDiffernces(3));

if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeDetect','Disp

Results','diffarea','','ERR'}),'''','')))
 disp(1-normDiffernces);
end

if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Crea

te Results File','ResultsFile','','ERR'}),'''','')));
 CwriteKeys={ResultsTitle,'Area Differnces','Circle',AreaScale*(1-

normDiffernces(1)),'plain'};
 SwriteKeys={ResultsTitle,'Area Differnces','Square',AreaScale*(1-

normDiffernces(2)),'plain'};
 TwriteKeys={ResultsTitle,'Area

Differnces','Triangles',AreaScale*(1-normDiffernces(3)),'plain'};
 inifile(ResultsfileName,'write',CwriteKeys);
 inifile(ResultsfileName,'write',SwriteKeys);
 inifile(ResultsfileName,'write',TwriteKeys);
end

%Now to check for the average value and variance from expected for the

first part to see
%if information there can help.
%how much of the graph to look at?
howfar=cell2mat(inifile(inifilename,'read',{'ShapeDetect','MeanValues',

'howfar','d','ERR'}));

SampMEAN=mean(data(1:int32((howfar)*numel(data))));
CMEAN=mean(Cdata(1:int32((howfar)*numel(Cdata))));
SMEAN=mean(Sdata(1:int32((howfar)*numel(Sdata))));
TMEAN=mean(Tdata(1:int32((howfar)*numel(Tdata))));

MeanDiffernces=[abs(SampMEAN-CMEAN),abs(SampMEAN-SMEAN),abs(SampMEAN-

TMEAN)];

normMeanDiffernces=MeanDiffernces/norm(MeanDiffernces);
Scale=cell2mat(inifile(inifilename,'read',{'ShapeDetect','MeanValues','

Scale','d','ERR'}));
FUllNormMeanDiff=[Scale*(1-normMeanDiffernces(1)),Scale*(1-

normMeanDiffernces(2)),Scale*(1-normMeanDiffernces(3))];
SPSE(1)=SPSE(1)+Scale*(1-normMeanDiffernces(1));
SPSE(2)=SPSE(2)+Scale*(1-normMeanDiffernces(2));
SPSE(3)=SPSE(3)+Scale*(1-normMeanDiffernces(3));

if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeDetect','Disp

Results','diffmeanvals','','ERR'}),'''','')))
 disp(1-normMeanDiffernces);
end

192

if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Crea

te Results File','ResultsFile','','ERR'}),'''','')));
 CwriteKeys={ResultsTitle,'Mean Differnces','Circle',Scale*(1-

normMeanDiffernces(1)),'plain'};
 SwriteKeys={ResultsTitle,'Mean Differnces','Square',Scale*(1-

normMeanDiffernces(2)),'plain'};
 TwriteKeys={ResultsTitle,'Mean Differnces','Triangles',Scale*(1-

normMeanDiffernces(3)),'plain'};
 inifile(ResultsfileName,'write',CwriteKeys);
 inifile(ResultsfileName,'write',SwriteKeys);
 inifile(ResultsfileName,'write',TwriteKeys);
end

%Checking the first few points and the last few points near the slope

line
% Idea is to check for a consistent curve. Circle slopes upwards,

square
%is constant. and triangle near constant but higher value.This will

provide
%a sloped value that can be compared to see if values increase this

will
%not be effective for triangle or square. Also expect that circles may

have
%lower values as fewer points are as high
% MIGHT want to check if values go up or down for the slope

avgpoints=cell2mat(inifile(inifilename,'read',{'ShapeDetect','Slope','a

vgpoints','d','ERR'})); %how many point to average

CircleSlopePoint=Cradius;
SquareSlopePoint=Sradius;
TriangleSlopePoint=int32((Tradius/tan(deg2rad(60)))+((Tradius-

(Tradius/tan(deg2rad(60))))/3));

dataP1=mean(data(1:avgpoints));
CdataP2=mean(data(CircleSlopePoint-avgpoints:CircleSlopePoint));
SdataP2=mean(data(SquareSlopePoint-avgpoints:SquareSlopePoint));
TdataP2=mean(data(TriangleSlopePoint-avgpoints:TriangleSlopePoint));
slopeC=abs(dataP1-CdataP2);
slopeS=abs(dataP1-SdataP2);
slopeT=abs(dataP1-TdataP2);

CdataP1=mean(Cdata(1:avgpoints));
Cslope=abs(CdataP1-CdataP2);

SdataP1=mean(Sdata(1:avgpoints));
Sslope=abs(SdataP1-SdataP2);

TdataP1=mean(Tdata(1:avgpoints));
Tslope=abs(TdataP1-TdataP2);

193

slopes=[abs(slopeC-Cslope),abs(slopeS-Sslope),abs(slopeT-Tslope)];

normslopes=slopes/norm(slopes);
scale=cell2mat(inifile(inifilename,'read',{'ShapeDetect','Slope','scale

','d','ERR'}));
TotalSlopes=[scale*(1-normslopes(1)),scale*(1-normslopes(2)),scale*(1-

normslopes(3))];
SPSE(1)=SPSE(1)+scale*(1-normslopes(1));
SPSE(2)=SPSE(2)+scale*(1-normslopes(2));
SPSE(3)=SPSE(3)+scale*(1-normslopes(3));
if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeDetect','Disp

Results','diffslopes','','ERR'}),'''','')))
 disp(1-normslopes);
end

%% ResultsFile
if

strcmp('ON',char(strrep(inifile(inifilename,'read',{'ShapeRecogn','Crea

te Results File','ResultsFile','','ERR'}),'''','')));
 CwriteKeys={ResultsTitle,'Slope','Circle',scale*(1-

normslopes(1)),'plain'};
 SwriteKeys={ResultsTitle,'Slope','Square',scale*(1-

normslopes(2)),'plain'};
 TwriteKeys={ResultsTitle,'Slope','Triangles',scale*(1-

normslopes(3)),'plain'};
 inifile(ResultsfileName,'write',CwriteKeys);
 inifile(ResultsfileName,'write',SwriteKeys);
 inifile(ResultsfileName,'write',TwriteKeys);
end

%% Transfer the data out of the program/function :D
CTransfer=SPSE(1);
STransfer=SPSE(2);
TTransfer=SPSE(3);
end

194

HoughAssist.m:

function [Cdata,Sdata,Tdata]=HoughAssist(Cradius,Sradius,Tradius)
%This Helps get the values from the tables.
%Hugh Table assist. To go in shape detect
Title='Hough Data';
inifilename='config\Settings.ini';
topradius=cell2mat(inifile(inifilename,'read',{'HoughAssist','Stationar

yvalues','topradius','d','ERR'}));
%This is the largest number aviable to the user Don't change
splits=cell2mat(inifile(inifilename,'read',{'HoughAssist','Stationaryva

lues','splits','d','ERR'}));
numofsplits=1;

basefileName='SmallHoughData\HoughData_';
fileName=strcat(basefileName,num2str(1));
fileName=strcat(fileName,'_');
fileName=strcat(fileName,num2str(splits*numofsplits));
fileName=strcat(fileName,'.ini');

if max([Cradius,Sradius,Tradius])<=topradius
 for i=1:max([Cradius,Sradius,Tradius])
 if i==Cradius
 readKeys = {Title,'Circle',num2str(Cradius),'d','ERR'};
 Cdata = cell2mat(inifile(fileName,'read',readKeys));
 end
 if i==Sradius
 readKeys = {Title,'Square',num2str(Sradius),'d','ERR'};
 Sdata = cell2mat(inifile(fileName,'read',readKeys));
 end
 if i==Tradius
 readKeys = {Title,'Triangle',num2str(Tradius),'d','ERR'};
 Tdata = cell2mat(inifile(fileName,'read',readKeys));
 end

 if numofsplits*splits==i
 if i~= topradius
 numofsplits=numofsplits+1;
 fileName=strcat(basefileName,num2str(i+1));
 fileName=strcat(fileName,'_');
 fileName=strcat(fileName,num2str(splits*numofsplits));
 fileName=strcat(fileName,'.ini');
 end
 end
 end

end
if max([Cradius,Sradius,Tradius])>topradius
 disp('Data set out of bounds');
end
end

195

DISPLAYXY.m:

% Display image from x and y
%Made by TRevor Craig
%Started 5/31/2016 at 10:57 PM
% This functions displays image given X and Y input

function FilledImg=DISPXY(truefX,truefY)

FilledImg=zeros((max(truefX)-(min(truefX))),(max(truefY)-min(truefY)));
ConnectPoints=zeros(2*(numel(truefX)+1),1);
for k=1:numel(truefX)
 FilledImg(int32(truefY(k)),int32(truefX(k)))=255;%This can probably

be removed
 ConnectPoints(((2*k)-1))=int32(truefX(k));
 ConnectPoints(2*k)=int32(truefY(k));
end
k=k+1;
ConnectPoints(((2*k)-1))=int32(truefX(1));
ConnectPoints(2*k)=int32(truefY(1));
ConnectPoints=transpose(ConnectPoints);
shape='Line';
LineWidth=1;
color='red';
ConnectedImage=insertShape(FilledImg,shape,ConnectPoints,'color',

color,'LineWidth',LineWidth);
ConnectedImage=im2double(im2bw(ConnectedImage,.1));
FilledImg=ConnectedImage;
FilledImg=imfill(FilledImg,'holes');
end

196

ProgramLauncer.m:

% Launch The external Sofware Gazepoint Control
%Made by TRevor Craig
%Started 5/17/2016 at 2:04 PM
% This function launches the program needed to collect eye data.
function ProgramLaunher()
%This needs to be specfied for eaxh case program path
% fileexe_path = which ('Gazepoint.exe')
% system_command_string = [fileexe_path, ' &'];
% status = system (system_command_string)

system('C:\Program Files (x86)\Gazepoint\Gazepoint\bin64\Gazepoint.exe

&');
dos('taskkill /IM cmd.exe');
clc;
end

197

SaveToFiles.m:

% Save Results to Fine
%Made by TRevor Craig
%Started 8/2/2016 at 2:33 PM
% This functions gathers and then displays the results.
function SaveToFiles(IDNumber,recordX,recordY,SPSE,testNum)
FileDirectory='UserResults\';
Excelfile=strcat(FileDirectory,IDNumber,'\',num2str(SPSE),'_',num2str(t

estNum),'.csv');
FileName=strcat(FileDirectory,IDNumber);
A = exist(FileName,'file');% Return value should Be 7
if A==0
 mkdir(FileDirectory,IDNumber)
end
littletable=table(transpose(recordX),transpose(recordY));
writetable(littletable,Excelfile,'WriteVariableNames',false);
end

198

RandomName.m:

%Random Characters String
%Made by TRevor Craig
%Started 10/6/2016 at 1:13 AM

clear all; %Clear the screen for the user
close all; %Closses all the windows
echo off; %Doesn't display code the user doesn't need
clc; %Clears the command window For the User
clear vars; %Cleans up any previous data

%% General Set up
Letter='A':'Z';
Number=0:1:9;
NameLength=10;
Name='';
for i=1:NameLength
 Option = randi([1 2],1,1);

 if Option==1
 RandomChar=int2str(Number(randi([1 10],1,1)));
 end
 if Option==2
 RandomChar=char(Letter(randi([1 26],1,1)));
 end

 Name=strcat(Name,RandomChar);
end
disp('Your Name IS:')
disp(Name);

199

RandomTestOrder.m:

%Random Test Order
%Made by TRevor Craig
%Started 10/6/2016 at 1:30 AM

clear all; %Clear the screen for the user
close all; %Closses all the windows
echo off; %Doesn't display code the user doesn't need
clc; %Clears the command window For the User
clear vars; %Cleans up any previous data

%% Finding Random orders
TestLength=30;
Letter=['C','S','T'];
CircleCount=0;
SquareCount=0;
TriangleCount=0;
TestOrder='';
i=0;
while(TestLength~=numel(TestOrder))
 RandomChar=char(Letter(randi([1 3],1,1)));
 if RandomChar=='C';
 if CircleCount~=10
 TestOrder=strcat(TestOrder,RandomChar);
 CircleCount=CircleCount+1;
 end
 end
 if RandomChar=='S';
 if SquareCount~=10
 TestOrder=strcat(TestOrder,RandomChar);
 SquareCount=SquareCount+1;
 end

 end
 if RandomChar=='T';
 if TriangleCount~=10
 TestOrder=strcat(TestOrder,RandomChar);
 TriangleCount=TriangleCount+1;
 end
 end
 i=i+1;
 disp(['Number of Iterations:',int2str(i)]);
end
clc;
disp(['Number of Iterations:',int2str(i)]);
disp('The order of the test:');
disp(TestOrder);

200

APPENDIX 4:

This section has all the code needed for the Raspberry Pi video capture.

Camera Control Program:

Point-and-shoot camera for Raspberry Pi w/camera and Adafruit PiTFT.

This must run as root (sudo python cam.py) due to framebuffer, etc.

This can also work with the Model A board and/or the Pi NoIR camera.

Made by Trevor Craig

Adapted from Phil Burgess / Paint Your Dragon for Adafruit Industries.

import atexit

import cPickle as pickle

import errno

import fnmatch

import io

import os

import os.path

import picamera

import pygame

import stat

import threading

import time

import yuv2rgb

201

import RPi.GPIO as GPIO

from pygame.locals import *

from subprocess import call

import subprocess

import pyfirmata

#Setting up the arduino to do its work

board=pyfirmata.Arduino('/dev/ttyACM0')

print "Setting up the connection"

APins=1 #Pin that we are reading

it=pyfirmata.util.Iterator(board)

it.start()

Start reporting of pin 1

board.analog[1].enable_reporting()

#Setting up the GPIO Buttons

ExitButton=27

PICBUTTON=17

LowButton=23

HighButton=22

202

GPIO.setmode(GPIO.BCM)

GPIO.setup(ExitButton,GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(PICBUTTON,GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(LowButton,GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(HighButton,GPIO.IN, pull_up_down=GPIO.PUD_UP)

UI classes ---

Small resistive touchscreen is best suited to simple tap interactions.

Importing a big widget library seemed a bit overkill. Instead, a couple

of rudimentary classes are sufficient for the UI elements:

Icon is a very simple bitmap class, just associates a name and a pygame

image (PNG loaded from icons directory) for each.

There isn't a globally-declared fixed list of Icons. Instead, the list

is populated at runtime from the contents of the 'icons' directory.

class Icon:

 def __init__(self, name):

 self.name = name

 try:

 self.bitmap = pygame.image.load(iconPath + '/' + name + '.png')

203

 except:

 pass

Button is a simple tappable screen region. Each has:

- bounding rect ((X,Y,W,H) in pixels)

- optional background color and/or Icon (or None), always centered

- optional foreground Icon, always centered

- optional single callback function

- optional single value passed to callback

Occasionally Buttons are used as a convenience for positioning Icons

but the taps are ignored. Stacking order is important; when Buttons

overlap, lowest/first Button in list takes precedence when processing

input, and highest/last Button is drawn atop prior Button(s). This is

used, for example, to center an Icon by creating a passive Button the

width of the full screen, but with other buttons left or right that

may take input precedence (e.g. the Effect labels & buttons).

After Icons are loaded at runtime, a pass is made through the global

buttons[] list to assign the Icon objects (from names) to each Button.

class Button:

 def __init__(self, rect, **kwargs):

 self.rect = rect # Bounds

 self.color = None # Background fill color, if any

204

 self.iconBg = None # Background Icon (atop color fill)

 self.iconFg = None # Foreground Icon (atop background)

 self.bg = None # Background Icon name

 self.fg = None # Foreground Icon name

 self.callback = None # Callback function

 self.value = None # Value passed to callback

 for key, value in kwargs.iteritems():

 if key == 'color': self.color = value

 elif key == 'bg' : self.bg = value

 elif key == 'fg' : self.fg = value

 elif key == 'cb' : self.callback = value

 elif key == 'value': self.value = value

 def selected(self, pos):

 x1 = self.rect[0]

 y1 = self.rect[1]

 x2 = x1 + self.rect[2] - 1

 y2 = y1 + self.rect[3] - 1

 if ((pos[0] >= x1) and (pos[0] <= x2) and

 (pos[1] >= y1) and (pos[1] <= y2)):

 if self.callback:

 if self.value is None: self.callback()

 else: self.callback(self.value)

 return True

205

 return False

 def draw(self, screen):

 if self.color:

 screen.fill(self.color, self.rect)

 if self.iconBg:

 screen.blit(self.iconBg.bitmap,

 (self.rect[0]+(self.rect[2]-self.iconBg.bitmap.get_width())/2,

 self.rect[1]+(self.rect[3]-self.iconBg.bitmap.get_height())/2))

 if self.iconFg:

 screen.blit(self.iconFg.bitmap,

 (self.rect[0]+(self.rect[2]-self.iconFg.bitmap.get_width())/2,

 self.rect[1]+(self.rect[3]-self.iconFg.bitmap.get_height())/2))

 def setBg(self, name):

 if name is None:

 self.iconBg = None

 else:

 for i in icons:

 if name == i.name:

 self.iconBg = i

 break

206

UI callbacks ---

These are defined before globals because they're referenced by items in

the global buttons[] list.

def isoCallback(n): # Pass 1 (next ISO) or -1 (prev ISO)

 global isoMode

 setIsoMode((isoMode + n) % len(isoData))

def settingCallback(n): # Pass 1 (next setting) or -1 (prev setting)

 global screenMode

 screenMode += n

 if screenMode < 4: screenMode = len(buttons) - 1

 elif screenMode >= len(buttons): screenMode = 4

def fxCallback(n): # Pass 1 (next effect) or -1 (prev effect)

 global fxMode

 setFxMode((fxMode + n) % len(fxData))

def quitCallback(): # Quit confirmation button

 saveSettings()

 raise SystemExit

def viewCallback(n): # Viewfinder buttons

 global loadIdx, scaled, screenMode, screenModePrior, settingMode, storeMode

207

 if n is 0: # Gear icon (settings)

 screenMode = settingMode # Switch to last settings mode

 elif n is 1: # Play icon (image playback)

 if scaled: # Last photo is already memory-resident

 loadIdx = saveIdx

 screenMode = 0 # Image playback

 screenModePrior = -1 # Force screen refresh

 else: # Load image

 r = imgRange(pathData[storeMode])

 if r: showImage(r[1]) # Show last image in directory

 else: screenMode = 2 # No images

 else: # Rest of screen = shutter

 takePicture()

def doneCallback(): # Exit settings

 global screenMode, settingMode

 if screenMode > 3:

 settingMode = screenMode

 saveSettings()

 screenMode = 3 # Switch back to viewfinder mode

def imageCallback(n): # Pass 1 (next image), -1 (prev image) or 0 (delete)

 global screenMode

208

 if n is 0:

 screenMode = 1 # Delete confirmation

 else:

 showNextImage(n)

def deleteCallback(n): # Delete confirmation

 global loadIdx, scaled, screenMode, storeMode

 screenMode = 0

 screenModePrior = -1

 if n is True:

 os.remove(pathData[storeMode] + '/IMG_' + '%04d' % loadIdx + '.JPG')

 if(imgRange(pathData[storeMode])):

 screen.fill(0)

 pygame.display.update()

 showNextImage(-1)

 else: # Last image deleteted; go to 'no images' mode

 screenMode = 2

 scaled = None

 loadIdx = -1

def storeModeCallback(n): # Radio buttons on storage settings screen

 global storeMode

 buttons[4][storeMode + 3].setBg('radio3-0')

 storeMode = n

209

 buttons[4][storeMode + 3].setBg('radio3-1')

def sizeModeCallback(n): # Radio buttons on size settings screen

 global sizeMode

 buttons[5][sizeMode + 3].setBg('radio3-0')

 sizeMode = n

 buttons[5][sizeMode + 3].setBg('radio3-1')

 camera.resolution = sizeData[sizeMode][1]

def SetLowPot(): #This calibrates the pot to be at the zero pressure mark

 global LowPot

 LowPot=board.analog[1].read()

def SetHighPot(): #This calibrates the pot at the high end of pressure 30

 global HighPot

 HighPot=board.analog[1].read()

def ScalePotValues(): #Takes in potentiometer values and outputs pressures

 global PressureReading

 #LowPot=0

 #HighPot=1

 LowPressure=0

 HighPressure=30

 myreading=board.analog[1].read()

210

 PressureReading=(myreading-LowPot)*(HighPressure-LowPressure)/(HighPot-

LowPot)+LowPressure

def VideoNameSetter():

 global VideoName

 global VideoNumber

 WorkingDir='/media/EyeUSB/EyeVideos/'

 exists=1

 while (exists==1):

 exists=0

 if os.path.exists('/media/EyeUSB/EyeVideos/Myvideo'+str(VideoNumber)+'.h264'):

 exists=1

 print 'Finding File'

 VideoNumber=VideoNumber+1

 VideoName='/media/EyeUSB/EyeVideos/Myvideo'+str(VideoNumber)+'.h264'

def ConvertVideo():

 camera.annotate_text=str('SAVING')

 NewVideoName='/media/EyeUSB/EyeVideos/Myvideo'+str(VideoNumber)+'.mp4'

 ProcessName=str('MP4Box -add '+str(VideoName)+' '+str(NewVideoName))

 process=subprocess.Popen(ProcessName, shell=True, stdout=subprocess.PIPE)

 process.wait()

Global stuff ---

211

screenMode = 3 # Current screen mode; default = viewfinder

screenModePrior = -1 # Prior screen mode (for detecting changes)

settingMode = 4 # Last-used settings mode (default = storage)

storeMode = 0 # Storage mode; default = Photos folder

storeModePrior = -1 # Prior storage mode (for detecting changes)

sizeMode = 0 # Image size; default = Large

fxMode = 0 # Image effect; default = Normal

isoMode = 0 # ISO settingl default = Auto

iconPath = 'icons' # Subdirectory containing UI bitmaps (PNG format)

saveIdx = -1 # Image index for saving (-1 = none set yet)

loadIdx = -1 # Image index for loading

scaled = None # pygame Surface w/last-loaded image

PressureReading = 0 # This is the converted pressure reading from 0 and 1

LowPot = 0 # This is the lower potetiometer value

HighPot = 1 # This is the high potetiometer value

VideoNumber = 1 #Starting VIdeo Number

sizeData = [# Camera parameters for different size settings

 # Full res Viewfinder Crop window

 [(2592, 1944), (320, 240), (0.0 , 0.0 , 1.0 , 1.0)], # Large

 [(1920, 1080), (320, 180), (0.1296, 0.2222, 0.7408, 0.5556)], # Med

 [(1440, 1080), (320, 240), (0.2222, 0.2222, 0.5556, 0.5556)]] # Small

212

isoData = [# Values for ISO settings [ISO value, indicator X position]

 [0, 27], [100, 64], [200, 97], [320, 137],

 [400, 164], [500, 197], [640, 244], [800, 297]]

A fixed list of image effects is used (rather than polling

camera.IMAGE_EFFECTS) because the latter contains a few elements

that aren't valid (at least in video_port mode) -- e.g. blackboard,

whiteboard, posterize (but posterise, British spelling, is OK).

Others have no visible effect (or might require setting add'l

camera parameters for which there's no GUI yet) -- e.g. saturation,

colorbalance, colorpoint.

fxData = [

 'none', 'sketch', 'gpen', 'pastel', 'watercolor', 'oilpaint', 'hatch',

 'negative', 'colorswap', 'posterise', 'denoise', 'blur', 'film',

 'washedout', 'emboss', 'cartoon', 'solarize']

pathData = [

 #'/home/pi/Photos', # Path for storeMode = 0 (Photos folder)

 '/media/EyeUSB/EyePics', #Place to store the files to USB

 '/boot/DCIM/CANON999'] # Path for storeMode = 1 (Boot partition)

icons = [] # This list gets populated at startup

buttons[] is a list of lists; each top-level list element corresponds

213

to one screen mode (e.g. viewfinder, image playback, storage settings),

and each element within those lists corresponds to one UI button.

There's a little bit of repetition (e.g. prev/next buttons are

declared for each settings screen, rather than a single reusable

set); trying to reuse those few elements just made for an ugly

tangle of code elsewhere.

buttons = [

 # Screen mode 0 is photo playback

 [Button((0,188,320, 52), bg='done' , cb=doneCallback),

 Button((0, 0, 80, 52), bg='prev' , cb=imageCallback, value=-1),

 Button((240, 0, 80, 52), bg='next' , cb=imageCallback, value= 1),

 Button((88, 70,157,102)), # 'Working' label (when enabled)

 Button((148,129, 22, 22)), # Spinner (when enabled)

 Button((121, 0, 78, 52), bg='trash', cb=imageCallback, value= 0)],

 # Screen mode 1 is delete confirmation

 [Button((0,35,320, 33), bg='delete'),

 Button((32,86,120,100), bg='yn', fg='yes',

 cb=deleteCallback, value=True),

 Button((168,86,120,100), bg='yn', fg='no',

 cb=deleteCallback, value=False)],

 # Screen mode 2 is 'No Images'

214

 [Button((0, 0,320,240), cb=doneCallback), # Full screen = button

 Button((0,188,320, 52), bg='done'), # Fake 'Done' button

 Button((0, 53,320, 80), bg='empty')], # 'Empty' message

 # Screen mode 3 is viewfinder / snapshot

 #[Button((0,188,156, 52), bg='gear', cb=viewCallback, value=0),

 [Button((0,240-128,128, 128), bg='Gear2', cb=viewCallback, value=0),

 Button((164,188,156, 52), bg='play', cb=viewCallback, value=1),

 Button((0, 0,320,240) , cb=viewCallback, value=2),

 Button((88, 51,157,102)), # 'Working' label (when enabled)

 Button((148, 110,22, 22))], # Spinner (when enabled)

 # Remaining screens are settings modes

 # Screen mode 4 is storage settings

 [Button((0,188,320, 52), bg='done', cb=doneCallback),

 Button((0, 0, 80, 52), bg='prev', cb=settingCallback, value=-1),

 Button((240, 0, 80, 52), bg='next', cb=settingCallback, value= 1),

 Button((2, 60,100,120), bg='radio3-1', fg='store-folder',

 cb=storeModeCallback, value=0),

 Button((110, 60,100,120), bg='radio3-0', fg='store-boot',

 cb=storeModeCallback, value=1),

 Button((218, 60,100,120), bg='radio3-0', fg='store-dropbox',

 cb=storeModeCallback, value=2),

215

 Button((0, 10,320, 35), bg='storage')],

 # Screen mode 5 is size settings

 [Button((0,188,320, 52), bg='done', cb=doneCallback),

 Button((0, 0, 80, 52), bg='prev', cb=settingCallback, value=-1),

 Button((240, 0, 80, 52), bg='next', cb=settingCallback, value= 1),

 Button((2, 60,100,120), bg='radio3-1', fg='size-l',

 cb=sizeModeCallback, value=0),

 Button((110, 60,100,120), bg='radio3-0', fg='size-m',

 cb=sizeModeCallback, value=1),

 Button((218, 60,100,120), bg='radio3-0', fg='size-s',

 cb=sizeModeCallback, value=2),

 Button((0, 10,320, 29), bg='size')],

 # Screen mode 6 is graphic effect

 [Button((0,188,320, 52), bg='done', cb=doneCallback),

 Button((0, 0, 80, 52), bg='prev', cb=settingCallback, value=-1),

 Button((240, 0, 80, 52), bg='next', cb=settingCallback, value= 1),

 Button((0, 70, 80, 52), bg='prev', cb=fxCallback , value=-1),

 Button((240, 70, 80, 52), bg='next', cb=fxCallback , value= 1),

 Button((0, 67,320, 91), bg='fx-none'),

 Button((0, 11,320, 29), bg='fx')],

 # Screen mode 7 is ISO

216

 [Button((0,188,320, 52), bg='done', cb=doneCallback),

 Button((0, 0, 80, 52), bg='prev', cb=settingCallback, value=-1),

 Button((240, 0, 80, 52), bg='next', cb=settingCallback, value= 1),

 Button((0, 70, 80, 52), bg='prev', cb=isoCallback , value=-1),

 Button((240, 70, 80, 52), bg='next', cb=isoCallback , value= 1),

 Button((0, 79,320, 33), bg='iso-0'),

 Button((9,134,302, 26), bg='iso-bar'),

 Button((17,157, 21, 19), bg='iso-arrow'),

 Button((0, 10,320, 29), bg='iso')],

 # Screen mode 8 is quit confirmation

 [Button((0,188,320, 52), bg='done' , cb=doneCallback),

 Button((0, 0, 80, 52), bg='prev' , cb=settingCallback, value=-1),

 Button((240, 0, 80, 52), bg='next' , cb=settingCallback, value= 1),

 Button((110, 60,100,120), bg='quit-ok', cb=quitCallback),

 Button((0, 10,320, 35), bg='quit')]

]

Assorted utility functions ---

def setFxMode(n):

 global fxMode

 fxMode = n

 camera.image_effect = fxData[fxMode]

217

 buttons[6][5].setBg('fx-' + fxData[fxMode])

def setIsoMode(n):

 global isoMode

 isoMode = n

 camera.ISO = isoData[isoMode][0]

 buttons[7][5].setBg('iso-' + str(isoData[isoMode][0]))

 buttons[7][7].rect = ((isoData[isoMode][1] - 10,) +

 buttons[7][7].rect[1:])

def saveSettings():

 try:

 outfile = open('cam.pkl', 'wb')

 # Use a dictionary (rather than pickling 'raw' values) so

 # the number & order of things can change without breaking.

 d = { 'fx' : fxMode,

 'iso' : isoMode,

 'size' : sizeMode,

 'store' : storeMode }

 pickle.dump(d, outfile)

 outfile.close()

 except:

 pass

218

def loadSettings():

 try:

 infile = open('cam.pkl', 'rb')

 d = pickle.load(infile)

 infile.close()

 if 'fx' in d: setFxMode(d['fx'])

 if 'iso' in d: setIsoMode(d['iso'])

 if 'size' in d: sizeModeCallback(d['size'])

 if 'store' in d: storeModeCallback(d['store'])

 except:

 pass

Scan files in a directory, locating JPEGs with names matching the

software's convention (IMG_XXXX.JPG), returning a tuple with the

lowest and highest indices (or None if no matching files).

def imgRange(path):

 min = 9999

 max = 0

 try:

 for file in os.listdir(path):

 if fnmatch.fnmatch(file, 'IMG_[0-9][0-9][0-9][0-9].JPG'):

 i = int(file[4:8])

 if(i < min): min = i

 if(i > max): max = i

219

 finally:

 return None if min > max else (min, max)

Busy indicator. To use, run in separate thread, set global 'busy'

to False when done.

def spinner():

 global busy, screenMode, screenModePrior

 buttons[screenMode][3].setBg('working')

 buttons[screenMode][3].draw(screen)

 pygame.display.update()

 busy = True

 n = 0

 while busy is True:

 buttons[screenMode][4].setBg('work-' + str(n))

 buttons[screenMode][4].draw(screen)

 pygame.display.update()

 n = (n + 1) % 5

 time.sleep(0.15)

 buttons[screenMode][3].setBg(None)

 buttons[screenMode][4].setBg(None)

 screenModePrior = -1 # Force refresh

220

def takePicture():

 global busy, gid, loadIdx, saveIdx, scaled, sizeMode, storeMode, storeModePrior, uid

 if not os.path.isdir(pathData[storeMode]):

 try:

 os.makedirs(pathData[storeMode])

 # Set new directory ownership to pi user, mode to 755

 os.chown(pathData[storeMode], uid, gid)

 os.chmod(pathData[storeMode],

 stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR |

 stat.S_IRGRP | stat.S_IXGRP |

 stat.S_IROTH | stat.S_IXOTH)

 except OSError as e:

 # errno = 2 if can't create folder

 print errno.errorcode[e.errno]

 return

 # If this is the first time accessing this directory,

 # scan for the max image index, start at next pos.

 if storeMode != storeModePrior:

 r = imgRange(pathData[storeMode])

 if r is None:

 saveIdx = 1

 else:

221

 saveIdx = r[1] + 1

 if saveIdx > 9999: saveIdx = 0

 storeModePrior = storeMode

 # Scan for next available image slot

 while True:

 filename = pathData[storeMode] + '/IMG_' + '%04d' % saveIdx + '.JPG'

 if not os.path.isfile(filename): break

 saveIdx += 1

 if saveIdx > 9999: saveIdx = 0

 t = threading.Thread(target=spinner)

 t.start()

 scaled = None

 camera.resolution = sizeData[sizeMode][0]

 camera.crop = sizeData[sizeMode][2]

 try:

 camera.capture(filename, use_video_port=False, format='jpeg',

 thumbnail=None)

 # Set image file ownership to pi user, mode to 644

 # os.chown(filename, uid, gid) # Not working, why?

 os.chmod(filename,

 stat.S_IRUSR | stat.S_IWUSR | stat.S_IRGRP | stat.S_IROTH)

222

 img = pygame.image.load(filename)

 scaled = pygame.transform.scale(img, sizeData[sizeMode][1])

 finally:

 # Add error handling/indicator (disk full, etc.)

 camera.resolution = sizeData[sizeMode][1]

 camera.crop = (0.0, 0.0, 1.0, 1.0)

 busy = False

 t.join()

 if scaled:

 if scaled.get_height() < 240: # Letterbox

 screen.fill(0)

 screen.blit(scaled,

 ((320 - scaled.get_width()) / 2,

 (240 - scaled.get_height()) / 2))

 pygame.display.update()

 time.sleep(2.5)

 loadIdx = saveIdx

def showNextImage(direction):

 global busy, loadIdx

223

 t = threading.Thread(target=spinner)

 t.start()

 n = loadIdx

 while True:

 n += direction

 if(n > 9999): n = 0

 elif(n < 0): n = 9999

 if os.path.exists(pathData[storeMode]+'/IMG_'+'%04d'%n+'.JPG'):

 showImage(n)

 break

 busy = False

 t.join()

def showImage(n):

 global busy, loadIdx, scaled, screenMode, screenModePrior, sizeMode, storeMode

 t = threading.Thread(target=spinner)

 t.start()

 img = pygame.image.load(

 pathData[storeMode] + '/IMG_' + '%04d' % n + '.JPG')

 scaled = pygame.transform.scale(img, sizeData[sizeMode][1])

 loadIdx = n

224

 busy = False

 t.join()

 screenMode = 0 # Photo playback

 screenModePrior = -1 # Force screen refresh

Initialization ---

Init framebuffer/touchscreen environment variables

os.putenv('SDL_VIDEODRIVER', 'fbcon')

os.putenv('SDL_FBDEV' , '/dev/fb1')

os.putenv('SDL_MOUSEDRV' , 'TSLIB')

os.putenv('SDL_MOUSEDEV' , '/dev/input/touchscreen')

Get user & group IDs for file & folder creation

(Want these to be 'pi' or other user, not root)

s = os.getenv("SUDO_UID")

uid = int(s) if s else os.getuid()

s = os.getenv("SUDO_GID")

gid = int(s) if s else os.getgid()

Buffers for viewfinder data

rgb = bytearray(320 * 240 * 3)

225

yuv = bytearray(320 * 240 * 3 / 2)

Init pygame and screen

pygame.init()

pygame.mouse.set_visible(False)

screen = pygame.display.set_mode((0,0), pygame.FULLSCREEN)

Init camera and set up default values

camera = picamera.PiCamera()

atexit.register(camera.close)

camera.resolution = sizeData[sizeMode][1]

#camera.crop = sizeData[sizeMode][2]

#camera.crop = (0.0, 0.0, 1.0, 1.0) #Orginall

zooma=.4

shiftY=.08

esides=.04

#Look up value for ROI default (0.0, 0.0, 1.0, 1.0) (x, y, w, h)

camera.crop = (zooma+esides/2, zooma-shiftY, 1-zooma*2-esides, 1-zooma*2-esides)

Leave raw format at default YUV, don't touch, don't set to RGB!

Load all icons at startup.

for file in os.listdir(iconPath):

 if fnmatch.fnmatch(file, '*.png'):

 icons.append(Icon(file.split('.')[0]))

226

Assign Icons to Buttons, now that they're loaded

for s in buttons: # For each screenful of buttons...

 for b in s: # For each button on screen...

 for i in icons: # For each icon...

 if b.bg == i.name: # Compare names; match?

 b.iconBg = i # Assign Icon to Button

 b.bg = None # Name no longer used; allow garbage collection

 if b.fg == i.name:

 b.iconFg = i

 b.fg = None

loadSettings() # Must come last; fiddles with Button/Icon states

Main loop --

videostarted=0

VideoNameSetter()

while(True):

 exit_state=GPIO.input(ExitButton)

 Picture_state=GPIO.input(PICBUTTON)

 LowPot_state=GPIO.input(LowButton)

 HighPot_state=GPIO.input(HighButton)

227

 ScalePotValues()

 camera.annotate_text=str("%.2f" % PressureReading)

 #No TOuch SCreen controls

 if Picture_state==False:

 print("Taking your picture")

 print("Starting Video")

 if videostarted==0:

 camera.start_recording(VideoName,splitter_port=3)

 camera.annotate_text=str('STARTED')

 videostarted=1

pos =[100,100]

for b in buttons[screenMode]:

if b.selected(pos): break

Process touchscreen input

while True:

for event in pygame.event.get():

if(event.type is MOUSEBUTTONDOWN):

pos = pygame.mouse.get_pos()

print(pos)

for b in buttons[screenMode]:

if b.selected(pos): break

228

If in viewfinder or settings modes, stop processing touchscreen

and refresh the display to show the live preview. In other modes

(image playback, etc.), stop and refresh the screen only when

screenMode changes.

if screenMode >= 3 or screenMode != screenModePrior: break

 # Refresh display

 if screenMode >= 3: # Viewfinder or settings modes

 stream = io.BytesIO() # Capture into in-memory stream

 camera.capture(stream, use_video_port=True, format='raw')

 stream.seek(0)

 stream.readinto(yuv) # stream -> YUV buffer

 stream.close()

 yuv2rgb.convert(yuv, rgb, sizeData[sizeMode][1][0],

 sizeData[sizeMode][1][1])

 img = pygame.image.frombuffer(rgb[0:

 (sizeData[sizeMode][1][0] * sizeData[sizeMode][1][1] * 3)],

 sizeData[sizeMode][1], 'RGB')

 elif screenMode < 2: # Playback mode or delete confirmation

 img = scaled # Show last-loaded image

 else: # 'No Photos' mode

 img = None # You get nothing, good day sir

 if img is None or img.get_height() < 240: # Letterbox, clear background

229

 screen.fill(0)

 if img:

 screen.blit(img,

 ((320 - img.get_width()) / 2,

 (240 - img.get_height()) / 2))

Exitthe progrgram

 if exit_state==False:

 print("Ending Program: Goodbye")

 if videostarted==1:

 camera.stop_recording(splitter_port=3)

 ConvertVideo()

 board.exit() #otherwise will cause bad errors

 break

Calibrating the low state

 if LowPot_state==False:

 SetLowPot()

 print("Calibrated Low State")

Calibrating the high state

 if HighPot_state==False:

 SetHighPot()

230

 print("Calibrated High State")

 # Overlay buttons on display and update <- Create a button that updates the pot state on

picture

for i,b in enumerate(buttons[screenMode]):

b.draw(screen)

 pygame.display.update()

 screenModePrior = screenMode

231

